Metamath Proof Explorer


Theorem fcoreslem4

Description: Lemma 4 for fcores . (Contributed by AV, 17-Sep-2024)

Ref Expression
Hypotheses fcores.f
|- ( ph -> F : A --> B )
fcores.e
|- E = ( ran F i^i C )
fcores.p
|- P = ( `' F " C )
fcores.x
|- X = ( F |` P )
fcores.g
|- ( ph -> G : C --> D )
fcores.y
|- Y = ( G |` E )
Assertion fcoreslem4
|- ( ph -> ( Y o. X ) Fn P )

Proof

Step Hyp Ref Expression
1 fcores.f
 |-  ( ph -> F : A --> B )
2 fcores.e
 |-  E = ( ran F i^i C )
3 fcores.p
 |-  P = ( `' F " C )
4 fcores.x
 |-  X = ( F |` P )
5 fcores.g
 |-  ( ph -> G : C --> D )
6 fcores.y
 |-  Y = ( G |` E )
7 5 ffnd
 |-  ( ph -> G Fn C )
8 2 a1i
 |-  ( ph -> E = ( ran F i^i C ) )
9 inss2
 |-  ( ran F i^i C ) C_ C
10 8 9 eqsstrdi
 |-  ( ph -> E C_ C )
11 7 10 fnssresd
 |-  ( ph -> ( G |` E ) Fn E )
12 6 fneq1i
 |-  ( Y Fn E <-> ( G |` E ) Fn E )
13 11 12 sylibr
 |-  ( ph -> Y Fn E )
14 1 2 3 4 fcoreslem3
 |-  ( ph -> X : P -onto-> E )
15 fofn
 |-  ( X : P -onto-> E -> X Fn P )
16 14 15 syl
 |-  ( ph -> X Fn P )
17 1 2 3 4 fcoreslem2
 |-  ( ph -> ran X = E )
18 eqimss
 |-  ( ran X = E -> ran X C_ E )
19 17 18 syl
 |-  ( ph -> ran X C_ E )
20 fnco
 |-  ( ( Y Fn E /\ X Fn P /\ ran X C_ E ) -> ( Y o. X ) Fn P )
21 13 16 19 20 syl3anc
 |-  ( ph -> ( Y o. X ) Fn P )