Metamath Proof Explorer


Theorem fcoreslem4

Description: Lemma 4 for fcores . (Contributed by AV, 17-Sep-2024)

Ref Expression
Hypotheses fcores.f φ F : A B
fcores.e E = ran F C
fcores.p P = F -1 C
fcores.x X = F P
fcores.g φ G : C D
fcores.y Y = G E
Assertion fcoreslem4 φ Y X Fn P

Proof

Step Hyp Ref Expression
1 fcores.f φ F : A B
2 fcores.e E = ran F C
3 fcores.p P = F -1 C
4 fcores.x X = F P
5 fcores.g φ G : C D
6 fcores.y Y = G E
7 5 ffnd φ G Fn C
8 2 a1i φ E = ran F C
9 inss2 ran F C C
10 8 9 eqsstrdi φ E C
11 7 10 fnssresd φ G E Fn E
12 6 fneq1i Y Fn E G E Fn E
13 11 12 sylibr φ Y Fn E
14 1 2 3 4 fcoreslem3 φ X : P onto E
15 fofn X : P onto E X Fn P
16 14 15 syl φ X Fn P
17 1 2 3 4 fcoreslem2 φ ran X = E
18 eqimss ran X = E ran X E
19 17 18 syl φ ran X E
20 fnco Y Fn E X Fn P ran X E Y X Fn P
21 13 16 19 20 syl3anc φ Y X Fn P