Step |
Hyp |
Ref |
Expression |
1 |
|
fcores.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
fcores.e |
⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) |
3 |
|
fcores.p |
⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) |
4 |
|
fcores.x |
⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) |
5 |
|
fcores.g |
⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) |
6 |
|
fcores.y |
⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) |
7 |
1 2 3 4 5 6
|
fcores |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑌 ∘ 𝑋 ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑍 ) = ( ( 𝑌 ∘ 𝑋 ) ‘ 𝑍 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑍 ) = ( ( 𝑌 ∘ 𝑋 ) ‘ 𝑍 ) ) |
10 |
1 2 3 4
|
fcoreslem3 |
⊢ ( 𝜑 → 𝑋 : 𝑃 –onto→ 𝐸 ) |
11 |
|
fof |
⊢ ( 𝑋 : 𝑃 –onto→ 𝐸 → 𝑋 : 𝑃 ⟶ 𝐸 ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝑋 : 𝑃 ⟶ 𝐸 ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑃 ) → 𝑋 : 𝑃 ⟶ 𝐸 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑃 ) → 𝑍 ∈ 𝑃 ) |
15 |
13 14
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑋 ) ‘ 𝑍 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑍 ) ) ) |
16 |
9 15
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑍 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑍 ) ) ) |