Metamath Proof Explorer


Theorem fcoresf1lem

Description: Lemma for fcoresf1 . (Contributed by AV, 18-Sep-2024)

Ref Expression
Hypotheses fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
fcores.e 𝐸 = ( ran 𝐹𝐶 )
fcores.p 𝑃 = ( 𝐹𝐶 )
fcores.x 𝑋 = ( 𝐹𝑃 )
fcores.g ( 𝜑𝐺 : 𝐶𝐷 )
fcores.y 𝑌 = ( 𝐺𝐸 )
Assertion fcoresf1lem ( ( 𝜑𝑍𝑃 ) → ( ( 𝐺𝐹 ) ‘ 𝑍 ) = ( 𝑌 ‘ ( 𝑋𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
2 fcores.e 𝐸 = ( ran 𝐹𝐶 )
3 fcores.p 𝑃 = ( 𝐹𝐶 )
4 fcores.x 𝑋 = ( 𝐹𝑃 )
5 fcores.g ( 𝜑𝐺 : 𝐶𝐷 )
6 fcores.y 𝑌 = ( 𝐺𝐸 )
7 1 2 3 4 5 6 fcores ( 𝜑 → ( 𝐺𝐹 ) = ( 𝑌𝑋 ) )
8 7 fveq1d ( 𝜑 → ( ( 𝐺𝐹 ) ‘ 𝑍 ) = ( ( 𝑌𝑋 ) ‘ 𝑍 ) )
9 8 adantr ( ( 𝜑𝑍𝑃 ) → ( ( 𝐺𝐹 ) ‘ 𝑍 ) = ( ( 𝑌𝑋 ) ‘ 𝑍 ) )
10 1 2 3 4 fcoreslem3 ( 𝜑𝑋 : 𝑃onto𝐸 )
11 fof ( 𝑋 : 𝑃onto𝐸𝑋 : 𝑃𝐸 )
12 10 11 syl ( 𝜑𝑋 : 𝑃𝐸 )
13 12 adantr ( ( 𝜑𝑍𝑃 ) → 𝑋 : 𝑃𝐸 )
14 simpr ( ( 𝜑𝑍𝑃 ) → 𝑍𝑃 )
15 13 14 fvco3d ( ( 𝜑𝑍𝑃 ) → ( ( 𝑌𝑋 ) ‘ 𝑍 ) = ( 𝑌 ‘ ( 𝑋𝑍 ) ) )
16 9 15 eqtrd ( ( 𝜑𝑍𝑃 ) → ( ( 𝐺𝐹 ) ‘ 𝑍 ) = ( 𝑌 ‘ ( 𝑋𝑍 ) ) )