| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fcores.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 2 |
|
fcores.e |
⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) |
| 3 |
|
fcores.p |
⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) |
| 4 |
|
fcores.x |
⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) |
| 5 |
|
fcores.g |
⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) |
| 6 |
|
fcores.y |
⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) |
| 7 |
|
fcoresf1.i |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) |
| 8 |
1 2 3 4
|
fcoreslem3 |
⊢ ( 𝜑 → 𝑋 : 𝑃 –onto→ 𝐸 ) |
| 9 |
|
fof |
⊢ ( 𝑋 : 𝑃 –onto→ 𝐸 → 𝑋 : 𝑃 ⟶ 𝐸 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝑋 : 𝑃 ⟶ 𝐸 ) |
| 11 |
|
dff13 |
⊢ ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ↔ ( ( 𝐺 ∘ 𝐹 ) : 𝑃 ⟶ 𝐷 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 12 |
1 2 3 4 5 6
|
fcoresf1lem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
| 13 |
12
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
| 14 |
1 2 3 4 5 6
|
fcoresf1lem |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) |
| 15 |
14
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) |
| 16 |
13 15
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) ↔ ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) |
| 17 |
16
|
imbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) ) |
| 18 |
|
fveq2 |
⊢ ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) |
| 19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) |
| 20 |
19
|
imim1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) → ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 21 |
17 20
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 22 |
21
|
ralimdvva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 23 |
22
|
adantld |
⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) : 𝑃 ⟶ 𝐷 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 24 |
11 23
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 25 |
7 24
|
mpd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 26 |
|
dff13 |
⊢ ( 𝑋 : 𝑃 –1-1→ 𝐸 ↔ ( 𝑋 : 𝑃 ⟶ 𝐸 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 27 |
10 25 26
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 : 𝑃 –1-1→ 𝐸 ) |
| 28 |
2
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( ran 𝐹 ∩ 𝐶 ) ) |
| 29 |
|
inss2 |
⊢ ( ran 𝐹 ∩ 𝐶 ) ⊆ 𝐶 |
| 30 |
28 29
|
eqsstrdi |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐶 ) |
| 31 |
5 30
|
fssresd |
⊢ ( 𝜑 → ( 𝐺 ↾ 𝐸 ) : 𝐸 ⟶ 𝐷 ) |
| 32 |
6
|
feq1i |
⊢ ( 𝑌 : 𝐸 ⟶ 𝐷 ↔ ( 𝐺 ↾ 𝐸 ) : 𝐸 ⟶ 𝐷 ) |
| 33 |
31 32
|
sylibr |
⊢ ( 𝜑 → 𝑌 : 𝐸 ⟶ 𝐷 ) |
| 34 |
1 2 3 4
|
fcoreslem2 |
⊢ ( 𝜑 → ran 𝑋 = 𝐸 ) |
| 35 |
34
|
eqcomd |
⊢ ( 𝜑 → 𝐸 = ran 𝑋 ) |
| 36 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐸 ↔ 𝑥 ∈ ran 𝑋 ) ) |
| 37 |
|
fofn |
⊢ ( 𝑋 : 𝑃 –onto→ 𝐸 → 𝑋 Fn 𝑃 ) |
| 38 |
8 37
|
syl |
⊢ ( 𝜑 → 𝑋 Fn 𝑃 ) |
| 39 |
|
fvelrnb |
⊢ ( 𝑋 Fn 𝑃 → ( 𝑥 ∈ ran 𝑋 ↔ ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ) ) |
| 40 |
38 39
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ran 𝑋 ↔ ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ) ) |
| 41 |
36 40
|
bitrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐸 ↔ ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ) ) |
| 42 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↔ 𝑦 ∈ ran 𝑋 ) ) |
| 43 |
|
fvelrnb |
⊢ ( 𝑋 Fn 𝑃 → ( 𝑦 ∈ ran 𝑋 ↔ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) ) |
| 44 |
38 43
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝑋 ↔ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) ) |
| 45 |
42 44
|
bitrd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↔ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) ) |
| 46 |
41 45
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) ↔ ( ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) ) ) |
| 47 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
| 48 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 = 𝑦 ↔ 𝑎 = 𝑦 ) ) |
| 49 |
47 48
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑎 = 𝑦 ) ) ) |
| 50 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) ) |
| 51 |
50
|
eqeq2d |
⊢ ( 𝑦 = 𝑏 → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) ) ) |
| 52 |
|
equequ2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 = 𝑦 ↔ 𝑎 = 𝑏 ) ) |
| 53 |
51 52
|
imbi12d |
⊢ ( 𝑦 = 𝑏 → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑎 = 𝑦 ) ↔ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 54 |
49 53
|
rspc2v |
⊢ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 56 |
1 2 3 4 5 6
|
fcoresf1lem |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) ) |
| 57 |
56
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) ) |
| 58 |
1 2 3 4 5 6
|
fcoresf1lem |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) ) |
| 59 |
58
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) ) |
| 60 |
57 59
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) ↔ ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) ) ) |
| 61 |
60
|
imbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → 𝑎 = 𝑏 ) ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) |
| 63 |
62
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( 𝑎 = 𝑏 → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) |
| 64 |
63
|
imim2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → 𝑎 = 𝑏 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
| 65 |
61 64
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
| 66 |
55 65
|
syld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
| 67 |
66
|
ex |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) ) |
| 68 |
67
|
com23 |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) ) |
| 69 |
68
|
adantld |
⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) : 𝑃 ⟶ 𝐷 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) ) |
| 70 |
11 69
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) ) |
| 71 |
7 70
|
mpd |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
| 72 |
71
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) |
| 73 |
|
fveq2 |
⊢ ( ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ 𝑥 ) ) |
| 74 |
|
fveq2 |
⊢ ( ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) = ( 𝑌 ‘ 𝑦 ) ) |
| 75 |
73 74
|
eqeqan12rd |
⊢ ( ( ( 𝑋 ‘ 𝑏 ) = 𝑦 ∧ ( 𝑋 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) ↔ ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) ) ) |
| 76 |
|
eqeq12 |
⊢ ( ( ( 𝑋 ‘ 𝑎 ) = 𝑥 ∧ ( 𝑋 ‘ 𝑏 ) = 𝑦 ) → ( ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ↔ 𝑥 = 𝑦 ) ) |
| 77 |
76
|
ancoms |
⊢ ( ( ( 𝑋 ‘ 𝑏 ) = 𝑦 ∧ ( 𝑋 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ↔ 𝑥 = 𝑦 ) ) |
| 78 |
75 77
|
imbi12d |
⊢ ( ( ( 𝑋 ‘ 𝑏 ) = 𝑦 ∧ ( 𝑋 ‘ 𝑎 ) = 𝑥 ) → ( ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ↔ ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 79 |
72 78
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ( ( ( 𝑋 ‘ 𝑏 ) = 𝑦 ∧ ( 𝑋 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 80 |
79
|
expd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 81 |
80
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 82 |
81
|
com23 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 83 |
82
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 84 |
83
|
impd |
⊢ ( 𝜑 → ( ( ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 85 |
46 84
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 86 |
85
|
ralrimivv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 87 |
|
dff13 |
⊢ ( 𝑌 : 𝐸 –1-1→ 𝐷 ↔ ( 𝑌 : 𝐸 ⟶ 𝐷 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 88 |
33 86 87
|
sylanbrc |
⊢ ( 𝜑 → 𝑌 : 𝐸 –1-1→ 𝐷 ) |
| 89 |
27 88
|
jca |
⊢ ( 𝜑 → ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) ) |