Step |
Hyp |
Ref |
Expression |
1 |
|
fcores.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
fcores.e |
⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) |
3 |
|
fcores.p |
⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) |
4 |
|
fcores.x |
⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) |
5 |
|
fcores.g |
⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) |
6 |
|
fcores.y |
⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) |
7 |
|
fcoresf1.i |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) |
8 |
1 2 3 4
|
fcoreslem3 |
⊢ ( 𝜑 → 𝑋 : 𝑃 –onto→ 𝐸 ) |
9 |
|
fof |
⊢ ( 𝑋 : 𝑃 –onto→ 𝐸 → 𝑋 : 𝑃 ⟶ 𝐸 ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝑋 : 𝑃 ⟶ 𝐸 ) |
11 |
|
dff13 |
⊢ ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ↔ ( ( 𝐺 ∘ 𝐹 ) : 𝑃 ⟶ 𝐷 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
12 |
1 2 3 4 5 6
|
fcoresf1lem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
13 |
12
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
14 |
1 2 3 4 5 6
|
fcoresf1lem |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) |
15 |
14
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) |
16 |
13 15
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) ↔ ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) |
17 |
16
|
imbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) ) |
18 |
|
fveq2 |
⊢ ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) |
19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) |
20 |
19
|
imim1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑥 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) → ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
21 |
17 20
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
22 |
21
|
ralimdvva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
23 |
22
|
adantld |
⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) : 𝑃 ⟶ 𝐷 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
24 |
11 23
|
syl5bi |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
25 |
7 24
|
mpd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
26 |
|
dff13 |
⊢ ( 𝑋 : 𝑃 –1-1→ 𝐸 ↔ ( 𝑋 : 𝑃 ⟶ 𝐸 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
27 |
10 25 26
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 : 𝑃 –1-1→ 𝐸 ) |
28 |
2
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( ran 𝐹 ∩ 𝐶 ) ) |
29 |
|
inss2 |
⊢ ( ran 𝐹 ∩ 𝐶 ) ⊆ 𝐶 |
30 |
28 29
|
eqsstrdi |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐶 ) |
31 |
5 30
|
fssresd |
⊢ ( 𝜑 → ( 𝐺 ↾ 𝐸 ) : 𝐸 ⟶ 𝐷 ) |
32 |
6
|
feq1i |
⊢ ( 𝑌 : 𝐸 ⟶ 𝐷 ↔ ( 𝐺 ↾ 𝐸 ) : 𝐸 ⟶ 𝐷 ) |
33 |
31 32
|
sylibr |
⊢ ( 𝜑 → 𝑌 : 𝐸 ⟶ 𝐷 ) |
34 |
1 2 3 4
|
fcoreslem2 |
⊢ ( 𝜑 → ran 𝑋 = 𝐸 ) |
35 |
34
|
eqcomd |
⊢ ( 𝜑 → 𝐸 = ran 𝑋 ) |
36 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐸 ↔ 𝑥 ∈ ran 𝑋 ) ) |
37 |
|
fofn |
⊢ ( 𝑋 : 𝑃 –onto→ 𝐸 → 𝑋 Fn 𝑃 ) |
38 |
8 37
|
syl |
⊢ ( 𝜑 → 𝑋 Fn 𝑃 ) |
39 |
|
fvelrnb |
⊢ ( 𝑋 Fn 𝑃 → ( 𝑥 ∈ ran 𝑋 ↔ ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ) ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ran 𝑋 ↔ ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ) ) |
41 |
36 40
|
bitrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐸 ↔ ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ) ) |
42 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↔ 𝑦 ∈ ran 𝑋 ) ) |
43 |
|
fvelrnb |
⊢ ( 𝑋 Fn 𝑃 → ( 𝑦 ∈ ran 𝑋 ↔ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) ) |
44 |
38 43
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝑋 ↔ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) ) |
45 |
42 44
|
bitrd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐸 ↔ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) ) |
46 |
41 45
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) ↔ ( ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) ) ) |
47 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) ) ) |
48 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 = 𝑦 ↔ 𝑎 = 𝑦 ) ) |
49 |
47 48
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑎 = 𝑦 ) ) ) |
50 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) ) |
51 |
50
|
eqeq2d |
⊢ ( 𝑦 = 𝑏 → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) ↔ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) ) ) |
52 |
|
equequ2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 = 𝑦 ↔ 𝑎 = 𝑏 ) ) |
53 |
51 52
|
imbi12d |
⊢ ( 𝑦 = 𝑏 → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑎 = 𝑦 ) ↔ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
54 |
49 53
|
rspc2v |
⊢ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
56 |
1 2 3 4 5 6
|
fcoresf1lem |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) ) |
57 |
56
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) ) |
58 |
1 2 3 4 5 6
|
fcoresf1lem |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) ) |
59 |
58
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) ) |
60 |
57 59
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) ↔ ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) ) ) |
61 |
60
|
imbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → 𝑎 = 𝑏 ) ) ) |
62 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) |
63 |
62
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( 𝑎 = 𝑏 → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) |
64 |
63
|
imim2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → 𝑎 = 𝑏 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
65 |
61 64
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
66 |
55 65
|
syld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
67 |
66
|
ex |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) ) |
68 |
67
|
com23 |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) ) |
69 |
68
|
adantld |
⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) : 𝑃 ⟶ 𝐷 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) ) |
70 |
11 69
|
syl5bi |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) ) |
71 |
7 70
|
mpd |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
72 |
71
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ) |
73 |
|
fveq2 |
⊢ ( ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ 𝑥 ) ) |
74 |
|
fveq2 |
⊢ ( ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) = ( 𝑌 ‘ 𝑦 ) ) |
75 |
73 74
|
eqeqan12rd |
⊢ ( ( ( 𝑋 ‘ 𝑏 ) = 𝑦 ∧ ( 𝑋 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) ↔ ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) ) ) |
76 |
|
eqeq12 |
⊢ ( ( ( 𝑋 ‘ 𝑎 ) = 𝑥 ∧ ( 𝑋 ‘ 𝑏 ) = 𝑦 ) → ( ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ↔ 𝑥 = 𝑦 ) ) |
77 |
76
|
ancoms |
⊢ ( ( ( 𝑋 ‘ 𝑏 ) = 𝑦 ∧ ( 𝑋 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ↔ 𝑥 = 𝑦 ) ) |
78 |
75 77
|
imbi12d |
⊢ ( ( ( 𝑋 ‘ 𝑏 ) = 𝑦 ∧ ( 𝑋 ‘ 𝑎 ) = 𝑥 ) → ( ( ( 𝑌 ‘ ( 𝑋 ‘ 𝑎 ) ) = ( 𝑌 ‘ ( 𝑋 ‘ 𝑏 ) ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) ↔ ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
79 |
72 78
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ( ( ( 𝑋 ‘ 𝑏 ) = 𝑦 ∧ ( 𝑋 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
80 |
79
|
expd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ( ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
81 |
80
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
82 |
81
|
com23 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
83 |
82
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 → ( ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
84 |
83
|
impd |
⊢ ( 𝜑 → ( ( ∃ 𝑎 ∈ 𝑃 ( 𝑋 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑃 ( 𝑋 ‘ 𝑏 ) = 𝑦 ) → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
85 |
46 84
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) → ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
86 |
85
|
ralrimivv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
87 |
|
dff13 |
⊢ ( 𝑌 : 𝐸 –1-1→ 𝐷 ↔ ( 𝑌 : 𝐸 ⟶ 𝐷 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑌 ‘ 𝑥 ) = ( 𝑌 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
88 |
33 86 87
|
sylanbrc |
⊢ ( 𝜑 → 𝑌 : 𝐸 –1-1→ 𝐷 ) |
89 |
27 88
|
jca |
⊢ ( 𝜑 → ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) ) |