Metamath Proof Explorer


Theorem fcoresf1

Description: If a composition is injective, then the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 18-Sep-2024) (Revised by AV, 7-Oct-2024)

Ref Expression
Hypotheses fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
fcores.e 𝐸 = ( ran 𝐹𝐶 )
fcores.p 𝑃 = ( 𝐹𝐶 )
fcores.x 𝑋 = ( 𝐹𝑃 )
fcores.g ( 𝜑𝐺 : 𝐶𝐷 )
fcores.y 𝑌 = ( 𝐺𝐸 )
fcoresf1.i ( 𝜑 → ( 𝐺𝐹 ) : 𝑃1-1𝐷 )
Assertion fcoresf1 ( 𝜑 → ( 𝑋 : 𝑃1-1𝐸𝑌 : 𝐸1-1𝐷 ) )

Proof

Step Hyp Ref Expression
1 fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
2 fcores.e 𝐸 = ( ran 𝐹𝐶 )
3 fcores.p 𝑃 = ( 𝐹𝐶 )
4 fcores.x 𝑋 = ( 𝐹𝑃 )
5 fcores.g ( 𝜑𝐺 : 𝐶𝐷 )
6 fcores.y 𝑌 = ( 𝐺𝐸 )
7 fcoresf1.i ( 𝜑 → ( 𝐺𝐹 ) : 𝑃1-1𝐷 )
8 1 2 3 4 fcoreslem3 ( 𝜑𝑋 : 𝑃onto𝐸 )
9 fof ( 𝑋 : 𝑃onto𝐸𝑋 : 𝑃𝐸 )
10 8 9 syl ( 𝜑𝑋 : 𝑃𝐸 )
11 dff13 ( ( 𝐺𝐹 ) : 𝑃1-1𝐷 ↔ ( ( 𝐺𝐹 ) : 𝑃𝐷 ∧ ∀ 𝑥𝑃𝑦𝑃 ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) )
12 1 2 3 4 5 6 fcoresf1lem ( ( 𝜑𝑥𝑃 ) → ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( 𝑌 ‘ ( 𝑋𝑥 ) ) )
13 12 adantrr ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( 𝑌 ‘ ( 𝑋𝑥 ) ) )
14 1 2 3 4 5 6 fcoresf1lem ( ( 𝜑𝑦𝑃 ) → ( ( 𝐺𝐹 ) ‘ 𝑦 ) = ( 𝑌 ‘ ( 𝑋𝑦 ) ) )
15 14 adantrl ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( ( 𝐺𝐹 ) ‘ 𝑦 ) = ( 𝑌 ‘ ( 𝑋𝑦 ) ) )
16 13 15 eqeq12d ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) ↔ ( 𝑌 ‘ ( 𝑋𝑥 ) ) = ( 𝑌 ‘ ( 𝑋𝑦 ) ) ) )
17 16 imbi1d ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑌 ‘ ( 𝑋𝑥 ) ) = ( 𝑌 ‘ ( 𝑋𝑦 ) ) → 𝑥 = 𝑦 ) ) )
18 fveq2 ( ( 𝑋𝑥 ) = ( 𝑋𝑦 ) → ( 𝑌 ‘ ( 𝑋𝑥 ) ) = ( 𝑌 ‘ ( 𝑋𝑦 ) ) )
19 18 a1i ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( ( 𝑋𝑥 ) = ( 𝑋𝑦 ) → ( 𝑌 ‘ ( 𝑋𝑥 ) ) = ( 𝑌 ‘ ( 𝑋𝑦 ) ) ) )
20 19 imim1d ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( ( ( 𝑌 ‘ ( 𝑋𝑥 ) ) = ( 𝑌 ‘ ( 𝑋𝑦 ) ) → 𝑥 = 𝑦 ) → ( ( 𝑋𝑥 ) = ( 𝑋𝑦 ) → 𝑥 = 𝑦 ) ) )
21 17 20 sylbid ( ( 𝜑 ∧ ( 𝑥𝑃𝑦𝑃 ) ) → ( ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑋𝑥 ) = ( 𝑋𝑦 ) → 𝑥 = 𝑦 ) ) )
22 21 ralimdvva ( 𝜑 → ( ∀ 𝑥𝑃𝑦𝑃 ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ∀ 𝑥𝑃𝑦𝑃 ( ( 𝑋𝑥 ) = ( 𝑋𝑦 ) → 𝑥 = 𝑦 ) ) )
23 22 adantld ( 𝜑 → ( ( ( 𝐺𝐹 ) : 𝑃𝐷 ∧ ∀ 𝑥𝑃𝑦𝑃 ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ∀ 𝑥𝑃𝑦𝑃 ( ( 𝑋𝑥 ) = ( 𝑋𝑦 ) → 𝑥 = 𝑦 ) ) )
24 11 23 syl5bi ( 𝜑 → ( ( 𝐺𝐹 ) : 𝑃1-1𝐷 → ∀ 𝑥𝑃𝑦𝑃 ( ( 𝑋𝑥 ) = ( 𝑋𝑦 ) → 𝑥 = 𝑦 ) ) )
25 7 24 mpd ( 𝜑 → ∀ 𝑥𝑃𝑦𝑃 ( ( 𝑋𝑥 ) = ( 𝑋𝑦 ) → 𝑥 = 𝑦 ) )
26 dff13 ( 𝑋 : 𝑃1-1𝐸 ↔ ( 𝑋 : 𝑃𝐸 ∧ ∀ 𝑥𝑃𝑦𝑃 ( ( 𝑋𝑥 ) = ( 𝑋𝑦 ) → 𝑥 = 𝑦 ) ) )
27 10 25 26 sylanbrc ( 𝜑𝑋 : 𝑃1-1𝐸 )
28 2 a1i ( 𝜑𝐸 = ( ran 𝐹𝐶 ) )
29 inss2 ( ran 𝐹𝐶 ) ⊆ 𝐶
30 28 29 eqsstrdi ( 𝜑𝐸𝐶 )
31 5 30 fssresd ( 𝜑 → ( 𝐺𝐸 ) : 𝐸𝐷 )
32 6 feq1i ( 𝑌 : 𝐸𝐷 ↔ ( 𝐺𝐸 ) : 𝐸𝐷 )
33 31 32 sylibr ( 𝜑𝑌 : 𝐸𝐷 )
34 1 2 3 4 fcoreslem2 ( 𝜑 → ran 𝑋 = 𝐸 )
35 34 eqcomd ( 𝜑𝐸 = ran 𝑋 )
36 35 eleq2d ( 𝜑 → ( 𝑥𝐸𝑥 ∈ ran 𝑋 ) )
37 fofn ( 𝑋 : 𝑃onto𝐸𝑋 Fn 𝑃 )
38 8 37 syl ( 𝜑𝑋 Fn 𝑃 )
39 fvelrnb ( 𝑋 Fn 𝑃 → ( 𝑥 ∈ ran 𝑋 ↔ ∃ 𝑎𝑃 ( 𝑋𝑎 ) = 𝑥 ) )
40 38 39 syl ( 𝜑 → ( 𝑥 ∈ ran 𝑋 ↔ ∃ 𝑎𝑃 ( 𝑋𝑎 ) = 𝑥 ) )
41 36 40 bitrd ( 𝜑 → ( 𝑥𝐸 ↔ ∃ 𝑎𝑃 ( 𝑋𝑎 ) = 𝑥 ) )
42 35 eleq2d ( 𝜑 → ( 𝑦𝐸𝑦 ∈ ran 𝑋 ) )
43 fvelrnb ( 𝑋 Fn 𝑃 → ( 𝑦 ∈ ran 𝑋 ↔ ∃ 𝑏𝑃 ( 𝑋𝑏 ) = 𝑦 ) )
44 38 43 syl ( 𝜑 → ( 𝑦 ∈ ran 𝑋 ↔ ∃ 𝑏𝑃 ( 𝑋𝑏 ) = 𝑦 ) )
45 42 44 bitrd ( 𝜑 → ( 𝑦𝐸 ↔ ∃ 𝑏𝑃 ( 𝑋𝑏 ) = 𝑦 ) )
46 41 45 anbi12d ( 𝜑 → ( ( 𝑥𝐸𝑦𝐸 ) ↔ ( ∃ 𝑎𝑃 ( 𝑋𝑎 ) = 𝑥 ∧ ∃ 𝑏𝑃 ( 𝑋𝑏 ) = 𝑦 ) ) )
47 fveqeq2 ( 𝑥 = 𝑎 → ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) ↔ ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) ) )
48 eqeq1 ( 𝑥 = 𝑎 → ( 𝑥 = 𝑦𝑎 = 𝑦 ) )
49 47 48 imbi12d ( 𝑥 = 𝑎 → ( ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑎 = 𝑦 ) ) )
50 fveq2 ( 𝑦 = 𝑏 → ( ( 𝐺𝐹 ) ‘ 𝑦 ) = ( ( 𝐺𝐹 ) ‘ 𝑏 ) )
51 50 eqeq2d ( 𝑦 = 𝑏 → ( ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) ↔ ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( ( 𝐺𝐹 ) ‘ 𝑏 ) ) )
52 equequ2 ( 𝑦 = 𝑏 → ( 𝑎 = 𝑦𝑎 = 𝑏 ) )
53 51 52 imbi12d ( 𝑦 = 𝑏 → ( ( ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑎 = 𝑦 ) ↔ ( ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( ( 𝐺𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) )
54 49 53 rspc2v ( ( 𝑎𝑃𝑏𝑃 ) → ( ∀ 𝑥𝑃𝑦𝑃 ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( ( 𝐺𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) )
55 54 adantl ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ∀ 𝑥𝑃𝑦𝑃 ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( ( 𝐺𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) )
56 1 2 3 4 5 6 fcoresf1lem ( ( 𝜑𝑎𝑃 ) → ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( 𝑌 ‘ ( 𝑋𝑎 ) ) )
57 56 adantrr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( 𝑌 ‘ ( 𝑋𝑎 ) ) )
58 1 2 3 4 5 6 fcoresf1lem ( ( 𝜑𝑏𝑃 ) → ( ( 𝐺𝐹 ) ‘ 𝑏 ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) )
59 58 adantrl ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( 𝐺𝐹 ) ‘ 𝑏 ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) )
60 57 59 eqeq12d ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( ( 𝐺𝐹 ) ‘ 𝑏 ) ↔ ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) ) )
61 60 imbi1d ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( ( 𝐺𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) → 𝑎 = 𝑏 ) ) )
62 fveq2 ( 𝑎 = 𝑏 → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) )
63 62 a1i ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( 𝑎 = 𝑏 → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ) )
64 63 imim2d ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) → 𝑎 = 𝑏 ) → ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ) ) )
65 61 64 sylbid ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( ( ( 𝐺𝐹 ) ‘ 𝑎 ) = ( ( 𝐺𝐹 ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ) ) )
66 55 65 syld ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ∀ 𝑥𝑃𝑦𝑃 ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ) ) )
67 66 ex ( 𝜑 → ( ( 𝑎𝑃𝑏𝑃 ) → ( ∀ 𝑥𝑃𝑦𝑃 ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ) ) ) )
68 67 com23 ( 𝜑 → ( ∀ 𝑥𝑃𝑦𝑃 ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑎𝑃𝑏𝑃 ) → ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ) ) ) )
69 68 adantld ( 𝜑 → ( ( ( 𝐺𝐹 ) : 𝑃𝐷 ∧ ∀ 𝑥𝑃𝑦𝑃 ( ( ( 𝐺𝐹 ) ‘ 𝑥 ) = ( ( 𝐺𝐹 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝑎𝑃𝑏𝑃 ) → ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ) ) ) )
70 11 69 syl5bi ( 𝜑 → ( ( 𝐺𝐹 ) : 𝑃1-1𝐷 → ( ( 𝑎𝑃𝑏𝑃 ) → ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ) ) ) )
71 7 70 mpd ( 𝜑 → ( ( 𝑎𝑃𝑏𝑃 ) → ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ) ) )
72 71 impl ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) → ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ) )
73 fveq2 ( ( 𝑋𝑎 ) = 𝑥 → ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌𝑥 ) )
74 fveq2 ( ( 𝑋𝑏 ) = 𝑦 → ( 𝑌 ‘ ( 𝑋𝑏 ) ) = ( 𝑌𝑦 ) )
75 73 74 eqeqan12rd ( ( ( 𝑋𝑏 ) = 𝑦 ∧ ( 𝑋𝑎 ) = 𝑥 ) → ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) ↔ ( 𝑌𝑥 ) = ( 𝑌𝑦 ) ) )
76 eqeq12 ( ( ( 𝑋𝑎 ) = 𝑥 ∧ ( 𝑋𝑏 ) = 𝑦 ) → ( ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ↔ 𝑥 = 𝑦 ) )
77 76 ancoms ( ( ( 𝑋𝑏 ) = 𝑦 ∧ ( 𝑋𝑎 ) = 𝑥 ) → ( ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ↔ 𝑥 = 𝑦 ) )
78 75 77 imbi12d ( ( ( 𝑋𝑏 ) = 𝑦 ∧ ( 𝑋𝑎 ) = 𝑥 ) → ( ( ( 𝑌 ‘ ( 𝑋𝑎 ) ) = ( 𝑌 ‘ ( 𝑋𝑏 ) ) → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) ) ↔ ( ( 𝑌𝑥 ) = ( 𝑌𝑦 ) → 𝑥 = 𝑦 ) ) )
79 72 78 syl5ibcom ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) → ( ( ( 𝑋𝑏 ) = 𝑦 ∧ ( 𝑋𝑎 ) = 𝑥 ) → ( ( 𝑌𝑥 ) = ( 𝑌𝑦 ) → 𝑥 = 𝑦 ) ) )
80 79 expd ( ( ( 𝜑𝑎𝑃 ) ∧ 𝑏𝑃 ) → ( ( 𝑋𝑏 ) = 𝑦 → ( ( 𝑋𝑎 ) = 𝑥 → ( ( 𝑌𝑥 ) = ( 𝑌𝑦 ) → 𝑥 = 𝑦 ) ) ) )
81 80 rexlimdva ( ( 𝜑𝑎𝑃 ) → ( ∃ 𝑏𝑃 ( 𝑋𝑏 ) = 𝑦 → ( ( 𝑋𝑎 ) = 𝑥 → ( ( 𝑌𝑥 ) = ( 𝑌𝑦 ) → 𝑥 = 𝑦 ) ) ) )
82 81 com23 ( ( 𝜑𝑎𝑃 ) → ( ( 𝑋𝑎 ) = 𝑥 → ( ∃ 𝑏𝑃 ( 𝑋𝑏 ) = 𝑦 → ( ( 𝑌𝑥 ) = ( 𝑌𝑦 ) → 𝑥 = 𝑦 ) ) ) )
83 82 rexlimdva ( 𝜑 → ( ∃ 𝑎𝑃 ( 𝑋𝑎 ) = 𝑥 → ( ∃ 𝑏𝑃 ( 𝑋𝑏 ) = 𝑦 → ( ( 𝑌𝑥 ) = ( 𝑌𝑦 ) → 𝑥 = 𝑦 ) ) ) )
84 83 impd ( 𝜑 → ( ( ∃ 𝑎𝑃 ( 𝑋𝑎 ) = 𝑥 ∧ ∃ 𝑏𝑃 ( 𝑋𝑏 ) = 𝑦 ) → ( ( 𝑌𝑥 ) = ( 𝑌𝑦 ) → 𝑥 = 𝑦 ) ) )
85 46 84 sylbid ( 𝜑 → ( ( 𝑥𝐸𝑦𝐸 ) → ( ( 𝑌𝑥 ) = ( 𝑌𝑦 ) → 𝑥 = 𝑦 ) ) )
86 85 ralrimivv ( 𝜑 → ∀ 𝑥𝐸𝑦𝐸 ( ( 𝑌𝑥 ) = ( 𝑌𝑦 ) → 𝑥 = 𝑦 ) )
87 dff13 ( 𝑌 : 𝐸1-1𝐷 ↔ ( 𝑌 : 𝐸𝐷 ∧ ∀ 𝑥𝐸𝑦𝐸 ( ( 𝑌𝑥 ) = ( 𝑌𝑦 ) → 𝑥 = 𝑦 ) ) )
88 33 86 87 sylanbrc ( 𝜑𝑌 : 𝐸1-1𝐷 )
89 27 88 jca ( 𝜑 → ( 𝑋 : 𝑃1-1𝐸𝑌 : 𝐸1-1𝐷 ) )