Step |
Hyp |
Ref |
Expression |
1 |
|
fcores.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
fcores.e |
⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) |
3 |
|
fcores.p |
⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) |
4 |
|
fcores.x |
⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) |
5 |
|
fcores.g |
⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) |
6 |
|
fcores.y |
⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) → 𝐺 : 𝐶 ⟶ 𝐷 ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) |
10 |
7 2 3 4 8 6 9
|
fcoresf1 |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) → ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) ) |
11 |
10
|
ex |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 → ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) ) ) |
12 |
|
f1co |
⊢ ( ( 𝑌 : 𝐸 –1-1→ 𝐷 ∧ 𝑋 : 𝑃 –1-1→ 𝐸 ) → ( 𝑌 ∘ 𝑋 ) : 𝑃 –1-1→ 𝐷 ) |
13 |
12
|
ancoms |
⊢ ( ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) → ( 𝑌 ∘ 𝑋 ) : 𝑃 –1-1→ 𝐷 ) |
14 |
1 2 3 4 5 6
|
fcores |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑌 ∘ 𝑋 ) ) |
15 |
|
f1eq1 |
⊢ ( ( 𝐺 ∘ 𝐹 ) = ( 𝑌 ∘ 𝑋 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ↔ ( 𝑌 ∘ 𝑋 ) : 𝑃 –1-1→ 𝐷 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ↔ ( 𝑌 ∘ 𝑋 ) : 𝑃 –1-1→ 𝐷 ) ) |
17 |
13 16
|
syl5ibr |
⊢ ( 𝜑 → ( ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ) ) |
18 |
11 17
|
impbid |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –1-1→ 𝐷 ↔ ( 𝑋 : 𝑃 –1-1→ 𝐸 ∧ 𝑌 : 𝐸 –1-1→ 𝐷 ) ) ) |