Metamath Proof Explorer


Theorem fcoresfo

Description: If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024)

Ref Expression
Hypotheses fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
fcores.e 𝐸 = ( ran 𝐹𝐶 )
fcores.p 𝑃 = ( 𝐹𝐶 )
fcores.x 𝑋 = ( 𝐹𝑃 )
fcores.g ( 𝜑𝐺 : 𝐶𝐷 )
fcores.y 𝑌 = ( 𝐺𝐸 )
fcoresfo.s ( 𝜑 → ( 𝐺𝐹 ) : 𝑃onto𝐷 )
Assertion fcoresfo ( 𝜑𝑌 : 𝐸onto𝐷 )

Proof

Step Hyp Ref Expression
1 fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
2 fcores.e 𝐸 = ( ran 𝐹𝐶 )
3 fcores.p 𝑃 = ( 𝐹𝐶 )
4 fcores.x 𝑋 = ( 𝐹𝑃 )
5 fcores.g ( 𝜑𝐺 : 𝐶𝐷 )
6 fcores.y 𝑌 = ( 𝐺𝐸 )
7 fcoresfo.s ( 𝜑 → ( 𝐺𝐹 ) : 𝑃onto𝐷 )
8 2 a1i ( 𝜑𝐸 = ( ran 𝐹𝐶 ) )
9 inss2 ( ran 𝐹𝐶 ) ⊆ 𝐶
10 8 9 eqsstrdi ( 𝜑𝐸𝐶 )
11 5 10 fssresd ( 𝜑 → ( 𝐺𝐸 ) : 𝐸𝐷 )
12 6 feq1i ( 𝑌 : 𝐸𝐷 ↔ ( 𝐺𝐸 ) : 𝐸𝐷 )
13 11 12 sylibr ( 𝜑𝑌 : 𝐸𝐷 )
14 1 2 3 4 fcoreslem3 ( 𝜑𝑋 : 𝑃onto𝐸 )
15 fof ( 𝑋 : 𝑃onto𝐸𝑋 : 𝑃𝐸 )
16 14 15 syl ( 𝜑𝑋 : 𝑃𝐸 )
17 1 2 3 4 5 6 fcores ( 𝜑 → ( 𝐺𝐹 ) = ( 𝑌𝑋 ) )
18 17 eqcomd ( 𝜑 → ( 𝑌𝑋 ) = ( 𝐺𝐹 ) )
19 foeq1 ( ( 𝑌𝑋 ) = ( 𝐺𝐹 ) → ( ( 𝑌𝑋 ) : 𝑃onto𝐷 ↔ ( 𝐺𝐹 ) : 𝑃onto𝐷 ) )
20 18 19 syl ( 𝜑 → ( ( 𝑌𝑋 ) : 𝑃onto𝐷 ↔ ( 𝐺𝐹 ) : 𝑃onto𝐷 ) )
21 7 20 mpbird ( 𝜑 → ( 𝑌𝑋 ) : 𝑃onto𝐷 )
22 foco2 ( ( 𝑌 : 𝐸𝐷𝑋 : 𝑃𝐸 ∧ ( 𝑌𝑋 ) : 𝑃onto𝐷 ) → 𝑌 : 𝐸onto𝐷 )
23 13 16 21 22 syl3anc ( 𝜑𝑌 : 𝐸onto𝐷 )