Metamath Proof Explorer


Theorem fcoresfo

Description: If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024)

Ref Expression
Hypotheses fcores.f φ F : A B
fcores.e E = ran F C
fcores.p P = F -1 C
fcores.x X = F P
fcores.g φ G : C D
fcores.y Y = G E
fcoresfo.s φ G F : P onto D
Assertion fcoresfo φ Y : E onto D

Proof

Step Hyp Ref Expression
1 fcores.f φ F : A B
2 fcores.e E = ran F C
3 fcores.p P = F -1 C
4 fcores.x X = F P
5 fcores.g φ G : C D
6 fcores.y Y = G E
7 fcoresfo.s φ G F : P onto D
8 2 a1i φ E = ran F C
9 inss2 ran F C C
10 8 9 eqsstrdi φ E C
11 5 10 fssresd φ G E : E D
12 6 feq1i Y : E D G E : E D
13 11 12 sylibr φ Y : E D
14 1 2 3 4 fcoreslem3 φ X : P onto E
15 fof X : P onto E X : P E
16 14 15 syl φ X : P E
17 1 2 3 4 5 6 fcores φ G F = Y X
18 17 eqcomd φ Y X = G F
19 foeq1 Y X = G F Y X : P onto D G F : P onto D
20 18 19 syl φ Y X : P onto D G F : P onto D
21 7 20 mpbird φ Y X : P onto D
22 foco2 Y : E D X : P E Y X : P onto D Y : E onto D
23 13 16 21 22 syl3anc φ Y : E onto D