| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fcores.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 2 |
|
fcores.e |
⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) |
| 3 |
|
fcores.p |
⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) |
| 4 |
|
fcores.x |
⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) |
| 5 |
|
fcores.g |
⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) |
| 6 |
|
fcores.y |
⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) |
| 7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ) → 𝐺 : 𝐶 ⟶ 𝐷 ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ) |
| 10 |
7 2 3 4 8 6 9
|
fcoresfo |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ) → 𝑌 : 𝐸 –onto→ 𝐷 ) |
| 11 |
1 2 3 4
|
fcoreslem3 |
⊢ ( 𝜑 → 𝑋 : 𝑃 –onto→ 𝐸 ) |
| 12 |
11
|
anim1ci |
⊢ ( ( 𝜑 ∧ 𝑌 : 𝐸 –onto→ 𝐷 ) → ( 𝑌 : 𝐸 –onto→ 𝐷 ∧ 𝑋 : 𝑃 –onto→ 𝐸 ) ) |
| 13 |
|
foco |
⊢ ( ( 𝑌 : 𝐸 –onto→ 𝐷 ∧ 𝑋 : 𝑃 –onto→ 𝐸 ) → ( 𝑌 ∘ 𝑋 ) : 𝑃 –onto→ 𝐷 ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 : 𝐸 –onto→ 𝐷 ) → ( 𝑌 ∘ 𝑋 ) : 𝑃 –onto→ 𝐷 ) |
| 15 |
1 2 3 4 5 6
|
fcores |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑌 ∘ 𝑋 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 : 𝐸 –onto→ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) = ( 𝑌 ∘ 𝑋 ) ) |
| 17 |
|
foeq1 |
⊢ ( ( 𝐺 ∘ 𝐹 ) = ( 𝑌 ∘ 𝑋 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ↔ ( 𝑌 ∘ 𝑋 ) : 𝑃 –onto→ 𝐷 ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 : 𝐸 –onto→ 𝐷 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ↔ ( 𝑌 ∘ 𝑋 ) : 𝑃 –onto→ 𝐷 ) ) |
| 19 |
14 18
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑌 : 𝐸 –onto→ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ) |
| 20 |
10 19
|
impbida |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) : 𝑃 –onto→ 𝐷 ↔ 𝑌 : 𝐸 –onto→ 𝐷 ) ) |