Metamath Proof Explorer


Theorem fcoresfob

Description: A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024)

Ref Expression
Hypotheses fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
fcores.e 𝐸 = ( ran 𝐹𝐶 )
fcores.p 𝑃 = ( 𝐹𝐶 )
fcores.x 𝑋 = ( 𝐹𝑃 )
fcores.g ( 𝜑𝐺 : 𝐶𝐷 )
fcores.y 𝑌 = ( 𝐺𝐸 )
Assertion fcoresfob ( 𝜑 → ( ( 𝐺𝐹 ) : 𝑃onto𝐷𝑌 : 𝐸onto𝐷 ) )

Proof

Step Hyp Ref Expression
1 fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
2 fcores.e 𝐸 = ( ran 𝐹𝐶 )
3 fcores.p 𝑃 = ( 𝐹𝐶 )
4 fcores.x 𝑋 = ( 𝐹𝑃 )
5 fcores.g ( 𝜑𝐺 : 𝐶𝐷 )
6 fcores.y 𝑌 = ( 𝐺𝐸 )
7 1 adantr ( ( 𝜑 ∧ ( 𝐺𝐹 ) : 𝑃onto𝐷 ) → 𝐹 : 𝐴𝐵 )
8 5 adantr ( ( 𝜑 ∧ ( 𝐺𝐹 ) : 𝑃onto𝐷 ) → 𝐺 : 𝐶𝐷 )
9 simpr ( ( 𝜑 ∧ ( 𝐺𝐹 ) : 𝑃onto𝐷 ) → ( 𝐺𝐹 ) : 𝑃onto𝐷 )
10 7 2 3 4 8 6 9 fcoresfo ( ( 𝜑 ∧ ( 𝐺𝐹 ) : 𝑃onto𝐷 ) → 𝑌 : 𝐸onto𝐷 )
11 1 2 3 4 fcoreslem3 ( 𝜑𝑋 : 𝑃onto𝐸 )
12 11 anim1ci ( ( 𝜑𝑌 : 𝐸onto𝐷 ) → ( 𝑌 : 𝐸onto𝐷𝑋 : 𝑃onto𝐸 ) )
13 foco ( ( 𝑌 : 𝐸onto𝐷𝑋 : 𝑃onto𝐸 ) → ( 𝑌𝑋 ) : 𝑃onto𝐷 )
14 12 13 syl ( ( 𝜑𝑌 : 𝐸onto𝐷 ) → ( 𝑌𝑋 ) : 𝑃onto𝐷 )
15 1 2 3 4 5 6 fcores ( 𝜑 → ( 𝐺𝐹 ) = ( 𝑌𝑋 ) )
16 15 adantr ( ( 𝜑𝑌 : 𝐸onto𝐷 ) → ( 𝐺𝐹 ) = ( 𝑌𝑋 ) )
17 foeq1 ( ( 𝐺𝐹 ) = ( 𝑌𝑋 ) → ( ( 𝐺𝐹 ) : 𝑃onto𝐷 ↔ ( 𝑌𝑋 ) : 𝑃onto𝐷 ) )
18 16 17 syl ( ( 𝜑𝑌 : 𝐸onto𝐷 ) → ( ( 𝐺𝐹 ) : 𝑃onto𝐷 ↔ ( 𝑌𝑋 ) : 𝑃onto𝐷 ) )
19 14 18 mpbird ( ( 𝜑𝑌 : 𝐸onto𝐷 ) → ( 𝐺𝐹 ) : 𝑃onto𝐷 )
20 10 19 impbida ( 𝜑 → ( ( 𝐺𝐹 ) : 𝑃onto𝐷𝑌 : 𝐸onto𝐷 ) )