Step |
Hyp |
Ref |
Expression |
1 |
|
fcores.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
fcores.e |
⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) |
3 |
|
fcores.p |
⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) |
4 |
|
fcores.x |
⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) |
5 |
|
df-ima |
⊢ ( 𝐹 “ 𝑃 ) = ran ( 𝐹 ↾ 𝑃 ) |
6 |
4
|
rneqi |
⊢ ran 𝑋 = ran ( 𝐹 ↾ 𝑃 ) |
7 |
6
|
eqcomi |
⊢ ran ( 𝐹 ↾ 𝑃 ) = ran 𝑋 |
8 |
7
|
a1i |
⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝑃 ) = ran 𝑋 ) |
9 |
5 8
|
eqtr2id |
⊢ ( 𝜑 → ran 𝑋 = ( 𝐹 “ 𝑃 ) ) |
10 |
1 2 3
|
fcoreslem1 |
⊢ ( 𝜑 → 𝑃 = ( ◡ 𝐹 “ 𝐸 ) ) |
11 |
10
|
imaeq2d |
⊢ ( 𝜑 → ( 𝐹 “ 𝑃 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝐸 ) ) ) |
12 |
1
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
13 |
|
funimacnv |
⊢ ( Fun 𝐹 → ( 𝐹 “ ( ◡ 𝐹 “ 𝐸 ) ) = ( 𝐸 ∩ ran 𝐹 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( 𝐹 “ ( ◡ 𝐹 “ 𝐸 ) ) = ( 𝐸 ∩ ran 𝐹 ) ) |
15 |
|
inss1 |
⊢ ( ran 𝐹 ∩ 𝐶 ) ⊆ ran 𝐹 |
16 |
2 15
|
eqsstri |
⊢ 𝐸 ⊆ ran 𝐹 |
17 |
16
|
a1i |
⊢ ( 𝜑 → 𝐸 ⊆ ran 𝐹 ) |
18 |
|
df-ss |
⊢ ( 𝐸 ⊆ ran 𝐹 ↔ ( 𝐸 ∩ ran 𝐹 ) = 𝐸 ) |
19 |
17 18
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∩ ran 𝐹 ) = 𝐸 ) |
20 |
14 19
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 “ ( ◡ 𝐹 “ 𝐸 ) ) = 𝐸 ) |
21 |
9 11 20
|
3eqtrd |
⊢ ( 𝜑 → ran 𝑋 = 𝐸 ) |