Description: Lemma 1 for fcores . (Contributed by AV, 17-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | ||
fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | ||
Assertion | fcoreslem1 | ⊢ ( 𝜑 → 𝑃 = ( ◡ 𝐹 “ 𝐸 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
2 | fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | |
3 | fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | |
4 | 1 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
5 | cnvimainrn | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( ran 𝐹 ∩ 𝐶 ) ) = ( ◡ 𝐹 “ 𝐶 ) ) | |
6 | 4 5 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ran 𝐹 ∩ 𝐶 ) ) = ( ◡ 𝐹 “ 𝐶 ) ) |
7 | 6 | eqcomd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝐶 ) = ( ◡ 𝐹 “ ( ran 𝐹 ∩ 𝐶 ) ) ) |
8 | 2 | imaeq2i | ⊢ ( ◡ 𝐹 “ 𝐸 ) = ( ◡ 𝐹 “ ( ran 𝐹 ∩ 𝐶 ) ) |
9 | 7 3 8 | 3eqtr4g | ⊢ ( 𝜑 → 𝑃 = ( ◡ 𝐹 “ 𝐸 ) ) |