Metamath Proof Explorer


Theorem fcoreslem1

Description: Lemma 1 for fcores . (Contributed by AV, 17-Sep-2024)

Ref Expression
Hypotheses fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
fcores.e 𝐸 = ( ran 𝐹𝐶 )
fcores.p 𝑃 = ( 𝐹𝐶 )
Assertion fcoreslem1 ( 𝜑𝑃 = ( 𝐹𝐸 ) )

Proof

Step Hyp Ref Expression
1 fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
2 fcores.e 𝐸 = ( ran 𝐹𝐶 )
3 fcores.p 𝑃 = ( 𝐹𝐶 )
4 1 ffund ( 𝜑 → Fun 𝐹 )
5 cnvimainrn ( Fun 𝐹 → ( 𝐹 “ ( ran 𝐹𝐶 ) ) = ( 𝐹𝐶 ) )
6 4 5 syl ( 𝜑 → ( 𝐹 “ ( ran 𝐹𝐶 ) ) = ( 𝐹𝐶 ) )
7 6 eqcomd ( 𝜑 → ( 𝐹𝐶 ) = ( 𝐹 “ ( ran 𝐹𝐶 ) ) )
8 2 imaeq2i ( 𝐹𝐸 ) = ( 𝐹 “ ( ran 𝐹𝐶 ) )
9 7 3 8 3eqtr4g ( 𝜑𝑃 = ( 𝐹𝐸 ) )