| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inpreima |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( ran 𝐹 ∩ 𝐴 ) ) = ( ( ◡ 𝐹 “ ran 𝐹 ) ∩ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 2 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ dom 𝐹 |
| 3 |
|
cnvimarndm |
⊢ ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 |
| 4 |
2 3
|
sseqtrri |
⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ ( ◡ 𝐹 “ ran 𝐹 ) |
| 5 |
|
dfss2 |
⊢ ( ( ◡ 𝐹 “ 𝐴 ) ⊆ ( ◡ 𝐹 “ ran 𝐹 ) ↔ ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( ◡ 𝐹 “ 𝐴 ) ) |
| 6 |
4 5
|
mpbi |
⊢ ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( ◡ 𝐹 “ 𝐴 ) |
| 7 |
6
|
ineqcomi |
⊢ ( ( ◡ 𝐹 “ ran 𝐹 ) ∩ ( ◡ 𝐹 “ 𝐴 ) ) = ( ◡ 𝐹 “ 𝐴 ) |
| 8 |
1 7
|
eqtrdi |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( ran 𝐹 ∩ 𝐴 ) ) = ( ◡ 𝐹 “ 𝐴 ) ) |