Metamath Proof Explorer


Theorem cnvimainrn

Description: The preimage of the intersection of the range of a class and a class A is the preimage of the class A . (Contributed by AV, 17-Sep-2024)

Ref Expression
Assertion cnvimainrn FunFF-1ranFA=F-1A

Proof

Step Hyp Ref Expression
1 inpreima FunFF-1ranFA=F-1ranFF-1A
2 cnvimass F-1AdomF
3 cnvimarndm F-1ranF=domF
4 2 3 sseqtrri F-1AF-1ranF
5 df-ss F-1AF-1ranFF-1AF-1ranF=F-1A
6 4 5 mpbi F-1AF-1ranF=F-1A
7 6 ineqcomi F-1ranFF-1A=F-1A
8 1 7 eqtrdi FunFF-1ranFA=F-1A