Step |
Hyp |
Ref |
Expression |
1 |
|
cfsetsnfsetfv.f |
|
2 |
|
cfsetsnfsetfv.g |
|
3 |
|
cfsetsnfsetfv.h |
|
4 |
1 2 3
|
cfsetsnfsetf |
|
5 |
|
vex |
|
6 |
|
feq1 |
|
7 |
|
fveq1 |
|
8 |
7
|
adantr |
|
9 |
8
|
eqeq1d |
|
10 |
9
|
ralbidva |
|
11 |
10
|
rexbidv |
|
12 |
6 11
|
anbi12d |
|
13 |
5 12 1
|
elab2 |
|
14 |
|
simpllr |
|
15 |
|
eqid |
|
16 |
14 15
|
fmptd |
|
17 |
|
snex |
|
18 |
17
|
mptex |
|
19 |
|
feq1 |
|
20 |
18 19 2
|
elab2 |
|
21 |
16 20
|
sylibr |
|
22 |
|
fveq1 |
|
23 |
22
|
mpteq2dv |
|
24 |
23
|
eqeq2d |
|
25 |
24
|
adantl |
|
26 |
|
simpr |
|
27 |
|
eqidd |
|
28 |
|
eqidd |
|
29 |
|
eqidd |
|
30 |
|
snidg |
|
31 |
30
|
ad6antlr |
|
32 |
|
simpllr |
|
33 |
32
|
adantr |
|
34 |
28 29 31 33
|
fvmptd |
|
35 |
|
simpr |
|
36 |
35
|
adantr |
|
37 |
27 34 36 32
|
fvmptd |
|
38 |
26 37
|
eqtr4d |
|
39 |
38
|
ex |
|
40 |
39
|
ralimdva |
|
41 |
40
|
imp |
|
42 |
|
ffn |
|
43 |
42
|
adantl |
|
44 |
|
nfv |
|
45 |
|
fvexd |
|
46 |
|
eqid |
|
47 |
44 45 46
|
fnmptd |
|
48 |
43 47
|
jca |
|
49 |
48
|
adantr |
|
50 |
49
|
adantr |
|
51 |
|
eqfnfv |
|
52 |
50 51
|
syl |
|
53 |
41 52
|
mpbird |
|
54 |
21 25 53
|
rspcedvd |
|
55 |
|
simp-4l |
|
56 |
1 2 3
|
cfsetsnfsetfv |
|
57 |
55 56
|
sylan |
|
58 |
57
|
eqeq2d |
|
59 |
58
|
rexbidva |
|
60 |
54 59
|
mpbird |
|
61 |
60
|
ex |
|
62 |
61
|
rexlimdva |
|
63 |
62
|
expimpd |
|
64 |
13 63
|
syl5bi |
|
65 |
64
|
ralrimiv |
|
66 |
|
dffo3 |
|
67 |
4 65 66
|
sylanbrc |
|