Metamath Proof Explorer


Theorem cfsetsnfsetf1

Description: The mapping of the class of singleton functions into the class of constant functions is an injection. (Contributed by AV, 14-Sep-2024)

Ref Expression
Hypotheses cfsetsnfsetfv.f F=f|f:ABbBzAfz=b
cfsetsnfsetfv.g G=x|x:YB
cfsetsnfsetfv.h H=gGaAgY
Assertion cfsetsnfsetf1 AVYAH:G1-1F

Proof

Step Hyp Ref Expression
1 cfsetsnfsetfv.f F=f|f:ABbBzAfz=b
2 cfsetsnfsetfv.g G=x|x:YB
3 cfsetsnfsetfv.h H=gGaAgY
4 1 2 3 cfsetsnfsetf AVYAH:GF
5 1 2 3 cfsetsnfsetfv AVmGHm=aAmY
6 5 ad2ant2r AVYAmGnGHm=aAmY
7 1 2 3 cfsetsnfsetfv AVnGHn=aAnY
8 7 ad2ant2rl AVYAmGnGHn=aAnY
9 6 8 eqeq12d AVYAmGnGHm=HnaAmY=aAnY
10 fvexd AVYAmGnGaAmYV
11 10 ralrimiva AVYAmGnGaAmYV
12 mpteqb aAmYVaAmY=aAnYaAmY=nY
13 11 12 syl AVYAmGnGaAmY=aAnYaAmY=nY
14 simplr AVYAmGnGYA
15 idd AVYAmGnGa=YmY=nYmY=nY
16 14 15 rspcimdv AVYAmGnGaAmY=nYmY=nY
17 vex mV
18 feq1 x=mx:YBm:YB
19 17 18 2 elab2 mGm:YB
20 vex nV
21 feq1 x=nx:YBn:YB
22 20 21 2 elab2 nGn:YB
23 19 22 anbi12i mGnGm:YBn:YB
24 simp3 AVYAm:YBn:YBmY=nYmY=nY
25 simp1r AVYAm:YBn:YBmY=nYYA
26 fveq2 y=Ymy=mY
27 fveq2 y=Yny=nY
28 26 27 eqeq12d y=Ymy=nymY=nY
29 28 ralsng YAyYmy=nymY=nY
30 25 29 syl AVYAm:YBn:YBmY=nYyYmy=nymY=nY
31 24 30 mpbird AVYAm:YBn:YBmY=nYyYmy=ny
32 ffn m:YBmFnY
33 ffn n:YBnFnY
34 32 33 anim12i m:YBn:YBmFnYnFnY
35 34 3ad2ant2 AVYAm:YBn:YBmY=nYmFnYnFnY
36 eqfnfv mFnYnFnYm=nyYmy=ny
37 35 36 syl AVYAm:YBn:YBmY=nYm=nyYmy=ny
38 31 37 mpbird AVYAm:YBn:YBmY=nYm=n
39 38 3exp AVYAm:YBn:YBmY=nYm=n
40 23 39 biimtrid AVYAmGnGmY=nYm=n
41 40 imp AVYAmGnGmY=nYm=n
42 16 41 syld AVYAmGnGaAmY=nYm=n
43 13 42 sylbid AVYAmGnGaAmY=aAnYm=n
44 9 43 sylbid AVYAmGnGHm=Hnm=n
45 44 ralrimivva AVYAmGnGHm=Hnm=n
46 dff13 H:G1-1FH:GFmGnGHm=Hnm=n
47 4 45 46 sylanbrc AVYAH:G1-1F