Metamath Proof Explorer


Theorem cfsetsnfsetf1o

Description: The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024)

Ref Expression
Hypotheses cfsetsnfsetfv.f
|- F = { f | ( f : A --> B /\ E. b e. B A. z e. A ( f ` z ) = b ) }
cfsetsnfsetfv.g
|- G = { x | x : { Y } --> B }
cfsetsnfsetfv.h
|- H = ( g e. G |-> ( a e. A |-> ( g ` Y ) ) )
Assertion cfsetsnfsetf1o
|- ( ( A e. V /\ Y e. A ) -> H : G -1-1-onto-> F )

Proof

Step Hyp Ref Expression
1 cfsetsnfsetfv.f
 |-  F = { f | ( f : A --> B /\ E. b e. B A. z e. A ( f ` z ) = b ) }
2 cfsetsnfsetfv.g
 |-  G = { x | x : { Y } --> B }
3 cfsetsnfsetfv.h
 |-  H = ( g e. G |-> ( a e. A |-> ( g ` Y ) ) )
4 1 2 3 cfsetsnfsetf1
 |-  ( ( A e. V /\ Y e. A ) -> H : G -1-1-> F )
5 1 2 3 cfsetsnfsetfo
 |-  ( ( A e. V /\ Y e. A ) -> H : G -onto-> F )
6 df-f1o
 |-  ( H : G -1-1-onto-> F <-> ( H : G -1-1-> F /\ H : G -onto-> F ) )
7 4 5 6 sylanbrc
 |-  ( ( A e. V /\ Y e. A ) -> H : G -1-1-onto-> F )