Description: The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cfsetsnfsetfv.f | |- F = { f | ( f : A --> B /\ E. b e. B A. z e. A ( f ` z ) = b ) } |
|
cfsetsnfsetfv.g | |- G = { x | x : { Y } --> B } |
||
cfsetsnfsetfv.h | |- H = ( g e. G |-> ( a e. A |-> ( g ` Y ) ) ) |
||
Assertion | cfsetsnfsetf1o | |- ( ( A e. V /\ Y e. A ) -> H : G -1-1-onto-> F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfsetsnfsetfv.f | |- F = { f | ( f : A --> B /\ E. b e. B A. z e. A ( f ` z ) = b ) } |
|
2 | cfsetsnfsetfv.g | |- G = { x | x : { Y } --> B } |
|
3 | cfsetsnfsetfv.h | |- H = ( g e. G |-> ( a e. A |-> ( g ` Y ) ) ) |
|
4 | 1 2 3 | cfsetsnfsetf1 | |- ( ( A e. V /\ Y e. A ) -> H : G -1-1-> F ) |
5 | 1 2 3 | cfsetsnfsetfo | |- ( ( A e. V /\ Y e. A ) -> H : G -onto-> F ) |
6 | df-f1o | |- ( H : G -1-1-onto-> F <-> ( H : G -1-1-> F /\ H : G -onto-> F ) ) |
|
7 | 4 5 6 | sylanbrc | |- ( ( A e. V /\ Y e. A ) -> H : G -1-1-onto-> F ) |