Metamath Proof Explorer


Theorem cfval2

Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion cfval2 ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } ( card ‘ 𝑥 ) )

Proof

Step Hyp Ref Expression
1 cfval ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 ) ) } )
2 fvex ( card ‘ 𝑥 ) ∈ V
3 2 dfiin2 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } ( card ‘ 𝑥 ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } 𝑦 = ( card ‘ 𝑥 ) }
4 df-rex ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) )
5 rabid ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 ) )
6 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
7 6 anbi1i ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 ) ↔ ( 𝑥𝐴 ∧ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 ) )
8 5 7 bitri ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } ↔ ( 𝑥𝐴 ∧ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 ) )
9 8 anbi2ci ( ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ↔ ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 ) ) )
10 9 exbii ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 ) ) )
11 4 10 bitri ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 ) ) )
12 11 abbii { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } 𝑦 = ( card ‘ 𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 ) ) }
13 12 inteqi { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } 𝑦 = ( card ‘ 𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 ) ) }
14 3 13 eqtr2i { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥𝐴 ∧ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 ) ) } = 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } ( card ‘ 𝑥 )
15 1 14 eqtrdi ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∀ 𝑧𝐴𝑤𝑥 𝑧𝑤 } ( card ‘ 𝑥 ) )