Metamath Proof Explorer


Theorem cfval2

Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion cfval2 AOncfA=xx𝒫A|zAwxzwcardx

Proof

Step Hyp Ref Expression
1 cfval AOncfA=y|xy=cardxxAzAwxzw
2 fvex cardxV
3 2 dfiin2 xx𝒫A|zAwxzwcardx=y|xx𝒫A|zAwxzwy=cardx
4 df-rex xx𝒫A|zAwxzwy=cardxxxx𝒫A|zAwxzwy=cardx
5 rabid xx𝒫A|zAwxzwx𝒫AzAwxzw
6 velpw x𝒫AxA
7 6 anbi1i x𝒫AzAwxzwxAzAwxzw
8 5 7 bitri xx𝒫A|zAwxzwxAzAwxzw
9 8 anbi2ci xx𝒫A|zAwxzwy=cardxy=cardxxAzAwxzw
10 9 exbii xxx𝒫A|zAwxzwy=cardxxy=cardxxAzAwxzw
11 4 10 bitri xx𝒫A|zAwxzwy=cardxxy=cardxxAzAwxzw
12 11 abbii y|xx𝒫A|zAwxzwy=cardx=y|xy=cardxxAzAwxzw
13 12 inteqi y|xx𝒫A|zAwxzwy=cardx=y|xy=cardxxAzAwxzw
14 3 13 eqtr2i y|xy=cardxxAzAwxzw=xx𝒫A|zAwxzwcardx
15 1 14 eqtrdi AOncfA=xx𝒫A|zAwxzwcardx