| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chub1 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 2 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 3 |
1 2
|
jctil |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 4 |
|
ssin |
⊢ ( ( 𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ 𝐴 ⊆ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 5 |
3 4
|
sylib |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 6 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ 𝐴 |
| 7 |
5 6
|
jctil |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 8 |
|
eqss |
⊢ ( ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐴 ↔ ( ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 9 |
7 8
|
sylibr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐴 ) |