| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climaddf.1 | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | climaddf.2 | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 3 |  | climaddf.3 | ⊢ Ⅎ 𝑘 𝐺 | 
						
							| 4 |  | climaddf.4 | ⊢ Ⅎ 𝑘 𝐻 | 
						
							| 5 |  | climaddf.5 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 6 |  | climaddf.6 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 7 |  | climaddf.7 | ⊢ ( 𝜑  →  𝐹  ⇝  𝐴 ) | 
						
							| 8 |  | climaddf.8 | ⊢ ( 𝜑  →  𝐻  ∈  𝑋 ) | 
						
							| 9 |  | climaddf.9 | ⊢ ( 𝜑  →  𝐺  ⇝  𝐵 ) | 
						
							| 10 |  | climaddf.10 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 11 |  | climaddf.11 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 12 |  | climaddf.12 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  +  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑘 𝑗  ∈  𝑍 | 
						
							| 14 | 1 13 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝑍 ) | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑘 𝑗 | 
						
							| 16 | 2 15 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) | 
						
							| 17 | 16 | nfel1 | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 )  ∈  ℂ | 
						
							| 18 | 14 17 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 19 |  | eleq1w | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝑍  ↔  𝑗  ∈  𝑍 ) ) | 
						
							| 20 | 19 | anbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝑍 ) ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) ) | 
						
							| 23 | 20 22 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) ) ) | 
						
							| 24 | 18 23 10 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 25 | 3 15 | nffv | ⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑗 ) | 
						
							| 26 | 25 | nfel1 | ⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑗 )  ∈  ℂ | 
						
							| 27 | 14 26 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 29 | 28 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐺 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐺 ‘ 𝑗 )  ∈  ℂ ) ) | 
						
							| 30 | 20 29 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑗 )  ∈  ℂ ) ) ) | 
						
							| 31 | 27 30 11 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 32 | 4 15 | nffv | ⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) | 
						
							| 33 |  | nfcv | ⊢ Ⅎ 𝑘  + | 
						
							| 34 | 16 33 25 | nfov | ⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑗 )  +  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 35 | 32 34 | nfeq | ⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 )  +  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 36 | 14 35 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 )  +  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐻 ‘ 𝑘 )  =  ( 𝐻 ‘ 𝑗 ) ) | 
						
							| 38 | 21 28 | oveq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐹 ‘ 𝑘 )  +  ( 𝐺 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑗 )  +  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 39 | 37 38 | eqeq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  +  ( 𝐺 ‘ 𝑘 ) )  ↔  ( 𝐻 ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 )  +  ( 𝐺 ‘ 𝑗 ) ) ) ) | 
						
							| 40 | 20 39 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  +  ( 𝐺 ‘ 𝑘 ) ) )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 )  +  ( 𝐺 ‘ 𝑗 ) ) ) ) ) | 
						
							| 41 | 36 40 12 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑗 )  =  ( ( 𝐹 ‘ 𝑗 )  +  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 42 | 5 6 7 8 9 24 31 41 | climadd | ⊢ ( 𝜑  →  𝐻  ⇝  ( 𝐴  +  𝐵 ) ) |