| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmsubdir.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
clmsubdir.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
clmsubdir.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
clmsubdir.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
clmsubdir.m |
⊢ − = ( -g ‘ 𝑊 ) |
| 6 |
|
clmsubdir.w |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 7 |
|
clmsubdir.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 8 |
|
clmsubdir.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
| 9 |
|
clmsubdir.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
3 4
|
clmsub |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) ) |
| 11 |
6 7 8 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) · 𝑋 ) = ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) · 𝑋 ) ) |
| 13 |
|
eqid |
⊢ ( -g ‘ 𝐹 ) = ( -g ‘ 𝐹 ) |
| 14 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
| 15 |
6 14
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 16 |
1 2 3 4 5 13 15 7 8 9
|
lmodsubdir |
⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) ) |
| 17 |
12 16
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) ) |