| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmsubdir.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | clmsubdir.t |  |-  .x. = ( .s ` W ) | 
						
							| 3 |  | clmsubdir.f |  |-  F = ( Scalar ` W ) | 
						
							| 4 |  | clmsubdir.k |  |-  K = ( Base ` F ) | 
						
							| 5 |  | clmsubdir.m |  |-  .- = ( -g ` W ) | 
						
							| 6 |  | clmsubdir.w |  |-  ( ph -> W e. CMod ) | 
						
							| 7 |  | clmsubdir.a |  |-  ( ph -> A e. K ) | 
						
							| 8 |  | clmsubdir.b |  |-  ( ph -> B e. K ) | 
						
							| 9 |  | clmsubdir.x |  |-  ( ph -> X e. V ) | 
						
							| 10 | 3 4 | clmsub |  |-  ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` F ) B ) ) | 
						
							| 11 | 6 7 8 10 | syl3anc |  |-  ( ph -> ( A - B ) = ( A ( -g ` F ) B ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ph -> ( ( A - B ) .x. X ) = ( ( A ( -g ` F ) B ) .x. X ) ) | 
						
							| 13 |  | eqid |  |-  ( -g ` F ) = ( -g ` F ) | 
						
							| 14 |  | clmlmod |  |-  ( W e. CMod -> W e. LMod ) | 
						
							| 15 | 6 14 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 16 | 1 2 3 4 5 13 15 7 8 9 | lmodsubdir |  |-  ( ph -> ( ( A ( -g ` F ) B ) .x. X ) = ( ( A .x. X ) .- ( B .x. X ) ) ) | 
						
							| 17 | 12 16 | eqtrd |  |-  ( ph -> ( ( A - B ) .x. X ) = ( ( A .x. X ) .- ( B .x. X ) ) ) |