| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvscl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
clmvscl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
clmvscl.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
clmvscl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
2
|
clmmul |
⊢ ( 𝑊 ∈ ℂMod → · = ( .r ‘ 𝐹 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → · = ( .r ‘ 𝐹 ) ) |
| 7 |
6
|
oveqd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑄 · 𝑅 ) = ( 𝑄 ( .r ‘ 𝐹 ) 𝑅 ) ) |
| 8 |
7
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 · 𝑅 ) · 𝑋 ) = ( ( 𝑄 ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) ) |
| 9 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
| 10 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 11 |
1 2 3 4 10
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( 𝑄 · ( 𝑅 · 𝑋 ) ) ) |
| 12 |
9 11
|
sylan |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( 𝑄 · ( 𝑅 · 𝑋 ) ) ) |
| 13 |
8 12
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 · 𝑅 ) · 𝑋 ) = ( 𝑄 · ( 𝑅 · 𝑋 ) ) ) |