Metamath Proof Explorer


Theorem clmvsass

Description: Associative law for scalar product. Analogue of lmodvsass . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clmvscl.v 𝑉 = ( Base ‘ 𝑊 )
clmvscl.f 𝐹 = ( Scalar ‘ 𝑊 )
clmvscl.s · = ( ·𝑠𝑊 )
clmvscl.k 𝐾 = ( Base ‘ 𝐹 )
Assertion clmvsass ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑄 · 𝑅 ) · 𝑋 ) = ( 𝑄 · ( 𝑅 · 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 clmvscl.v 𝑉 = ( Base ‘ 𝑊 )
2 clmvscl.f 𝐹 = ( Scalar ‘ 𝑊 )
3 clmvscl.s · = ( ·𝑠𝑊 )
4 clmvscl.k 𝐾 = ( Base ‘ 𝐹 )
5 2 clmmul ( 𝑊 ∈ ℂMod → · = ( .r𝐹 ) )
6 5 adantr ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → · = ( .r𝐹 ) )
7 6 oveqd ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( 𝑄 · 𝑅 ) = ( 𝑄 ( .r𝐹 ) 𝑅 ) )
8 7 oveq1d ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑄 · 𝑅 ) · 𝑋 ) = ( ( 𝑄 ( .r𝐹 ) 𝑅 ) · 𝑋 ) )
9 clmlmod ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod )
10 eqid ( .r𝐹 ) = ( .r𝐹 )
11 1 2 3 4 10 lmodvsass ( ( 𝑊 ∈ LMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑄 ( .r𝐹 ) 𝑅 ) · 𝑋 ) = ( 𝑄 · ( 𝑅 · 𝑋 ) ) )
12 9 11 sylan ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑄 ( .r𝐹 ) 𝑅 ) · 𝑋 ) = ( 𝑄 · ( 𝑅 · 𝑋 ) ) )
13 8 12 eqtrd ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑄 · 𝑅 ) · 𝑋 ) = ( 𝑄 · ( 𝑅 · 𝑋 ) ) )