| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmvscl.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | clmvscl.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | clmvscl.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | clmvscl.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | ssel | ⊢ ( 𝐾  ⊆  ℂ  →  ( 𝑄  ∈  𝐾  →  𝑄  ∈  ℂ ) ) | 
						
							| 6 |  | ssel | ⊢ ( 𝐾  ⊆  ℂ  →  ( 𝑅  ∈  𝐾  →  𝑅  ∈  ℂ ) ) | 
						
							| 7 | 5 6 | anim12d | ⊢ ( 𝐾  ⊆  ℂ  →  ( ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾 )  →  ( 𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ ) ) ) | 
						
							| 8 | 2 4 | clmsscn | ⊢ ( 𝑊  ∈  ℂMod  →  𝐾  ⊆  ℂ ) | 
						
							| 9 | 7 8 | syl11 | ⊢ ( ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾 )  →  ( 𝑊  ∈  ℂMod  →  ( 𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ ) ) ) | 
						
							| 10 | 9 | 3adant3 | ⊢ ( ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝑊  ∈  ℂMod  →  ( 𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ ) ) ) | 
						
							| 11 | 10 | impcom | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( 𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ ) ) | 
						
							| 12 |  | mulcom | ⊢ ( ( 𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( 𝑄  ·  𝑅 )  =  ( 𝑅  ·  𝑄 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( 𝑄  ·  𝑅 )  =  ( 𝑅  ·  𝑄 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑄  ·  𝑅 )  ·  𝑋 )  =  ( ( 𝑅  ·  𝑄 )  ·  𝑋 ) ) | 
						
							| 15 | 1 2 3 4 | clmvsass | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑄  ·  𝑅 )  ·  𝑋 )  =  ( 𝑄  ·  ( 𝑅  ·  𝑋 ) ) ) | 
						
							| 16 |  | 3ancoma | ⊢ ( ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ↔  ( 𝑅  ∈  𝐾  ∧  𝑄  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) ) | 
						
							| 17 | 1 2 3 4 | clmvsass | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( 𝑅  ∈  𝐾  ∧  𝑄  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑅  ·  𝑄 )  ·  𝑋 )  =  ( 𝑅  ·  ( 𝑄  ·  𝑋 ) ) ) | 
						
							| 18 | 16 17 | sylan2b | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑅  ·  𝑄 )  ·  𝑋 )  =  ( 𝑅  ·  ( 𝑄  ·  𝑋 ) ) ) | 
						
							| 19 | 14 15 18 | 3eqtr3d | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( 𝑄  ·  ( 𝑅  ·  𝑋 ) )  =  ( 𝑅  ·  ( 𝑄  ·  𝑋 ) ) ) |