| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fusgrusgr |
⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → 𝐺 ∈ USGraph ) |
| 3 |
|
fusgrfis |
⊢ ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( Edg ‘ 𝐺 ) ∈ Fin ) |
| 5 |
|
simpr |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 6 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 7 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 8 |
6 7
|
clnbusgrfi |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( Edg ‘ 𝐺 ) ∈ Fin ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ClNeighbVtx 𝑁 ) ∈ Fin ) |
| 9 |
2 4 5 8
|
syl3anc |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ClNeighbVtx 𝑁 ) ∈ Fin ) |