| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlkndivn | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  𝑁  ∥  ( ♯ ‘ ( 𝑁  ClWWalksN  𝐺 ) ) ) | 
						
							| 2 |  | fusgrusgr | ⊢ ( 𝐺  ∈  FinUSGraph  →  𝐺  ∈  USGraph ) | 
						
							| 3 |  | usgruspgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  USPGraph ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐺  ∈  FinUSGraph  →  𝐺  ∈  USPGraph ) | 
						
							| 5 |  | prmnn | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ℕ ) | 
						
							| 6 |  | clwlkssizeeq | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ ( 𝑁  ClWWalksN  𝐺 ) )  =  ( ♯ ‘ { 𝑐  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ♯ ‘ ( 1st  ‘ 𝑐 ) )  =  𝑁 } ) ) | 
						
							| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  ( ♯ ‘ ( 𝑁  ClWWalksN  𝐺 ) )  =  ( ♯ ‘ { 𝑐  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ♯ ‘ ( 1st  ‘ 𝑐 ) )  =  𝑁 } ) ) | 
						
							| 8 | 1 7 | breqtrd | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  𝑁  ∥  ( ♯ ‘ { 𝑐  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ♯ ‘ ( 1st  ‘ 𝑐 ) )  =  𝑁 } ) ) |