| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | fusgrvtxfi | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑁  ClWWalksN  𝐺 )  =  ( 𝑁  ClWWalksN  𝐺 ) | 
						
							| 5 |  | eqid | ⊢ { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑢  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) }  =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑢  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } | 
						
							| 6 | 4 5 | qerclwwlknfi | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( ( 𝑁  ClWWalksN  𝐺 )  /  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑢  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } )  ∈  Fin ) | 
						
							| 7 |  | hashcl | ⊢ ( ( ( 𝑁  ClWWalksN  𝐺 )  /  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑢  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } )  ∈  Fin  →  ( ♯ ‘ ( ( 𝑁  ClWWalksN  𝐺 )  /  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑢  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } ) )  ∈  ℕ0 ) | 
						
							| 8 | 3 6 7 | 3syl | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  ( ♯ ‘ ( ( 𝑁  ClWWalksN  𝐺 )  /  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑢  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } ) )  ∈  ℕ0 ) | 
						
							| 9 | 8 | nn0zd | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  ( ♯ ‘ ( ( 𝑁  ClWWalksN  𝐺 )  /  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑢  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } ) )  ∈  ℤ ) | 
						
							| 10 |  | prmz | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ℤ ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  𝑁  ∈  ℤ ) | 
						
							| 12 |  | dvdsmul2 | ⊢ ( ( ( ♯ ‘ ( ( 𝑁  ClWWalksN  𝐺 )  /  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑢  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } ) )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑁  ∥  ( ( ♯ ‘ ( ( 𝑁  ClWWalksN  𝐺 )  /  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑢  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } ) )  ·  𝑁 ) ) | 
						
							| 13 | 9 11 12 | syl2anc | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  𝑁  ∥  ( ( ♯ ‘ ( ( 𝑁  ClWWalksN  𝐺 )  /  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑢  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } ) )  ·  𝑁 ) ) | 
						
							| 14 | 4 5 | fusgrhashclwwlkn | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  ( ♯ ‘ ( 𝑁  ClWWalksN  𝐺 ) )  =  ( ( ♯ ‘ ( ( 𝑁  ClWWalksN  𝐺 )  /  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑢  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } ) )  ·  𝑁 ) ) | 
						
							| 15 | 13 14 | breqtrrd | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  𝑁  ∥  ( ♯ ‘ ( 𝑁  ClWWalksN  𝐺 ) ) ) |