| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w | ⊢ 𝑊  =  ( 𝑁  ClWWalksN  𝐺 ) | 
						
							| 2 |  | erclwwlkn.r | ⊢  ∼   =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } | 
						
							| 3 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 4 | 3 | fusgrvtxfi | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 6 | 1 2 | hashclwwlkn0 | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( ♯ ‘ 𝑊 )  =  Σ 𝑥  ∈  ( 𝑊  /   ∼  ) ( ♯ ‘ 𝑥 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  ( ♯ ‘ 𝑊 )  =  Σ 𝑥  ∈  ( 𝑊  /   ∼  ) ( ♯ ‘ 𝑥 ) ) | 
						
							| 8 |  | fusgrusgr | ⊢ ( 𝐺  ∈  FinUSGraph  →  𝐺  ∈  USGraph ) | 
						
							| 9 |  | usgrumgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UMGraph ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐺  ∈  FinUSGraph  →  𝐺  ∈  UMGraph ) | 
						
							| 11 | 1 2 | umgrhashecclwwlk | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( 𝑥  ∈  ( 𝑊  /   ∼  )  →  ( ♯ ‘ 𝑥 )  =  𝑁 ) ) | 
						
							| 12 | 10 11 | sylan | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  ( 𝑥  ∈  ( 𝑊  /   ∼  )  →  ( ♯ ‘ 𝑥 )  =  𝑁 ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  ∧  𝑥  ∈  ( 𝑊  /   ∼  ) )  →  ( ♯ ‘ 𝑥 )  =  𝑁 ) | 
						
							| 14 | 13 | sumeq2dv | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  Σ 𝑥  ∈  ( 𝑊  /   ∼  ) ( ♯ ‘ 𝑥 )  =  Σ 𝑥  ∈  ( 𝑊  /   ∼  ) 𝑁 ) | 
						
							| 15 | 1 2 | qerclwwlknfi | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( 𝑊  /   ∼  )  ∈  Fin ) | 
						
							| 16 | 5 15 | syl | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  ( 𝑊  /   ∼  )  ∈  Fin ) | 
						
							| 17 |  | prmnn | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ℕ ) | 
						
							| 18 | 17 | nncnd | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ℂ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  𝑁  ∈  ℂ ) | 
						
							| 20 |  | fsumconst | ⊢ ( ( ( 𝑊  /   ∼  )  ∈  Fin  ∧  𝑁  ∈  ℂ )  →  Σ 𝑥  ∈  ( 𝑊  /   ∼  ) 𝑁  =  ( ( ♯ ‘ ( 𝑊  /   ∼  ) )  ·  𝑁 ) ) | 
						
							| 21 | 16 19 20 | syl2anc | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  Σ 𝑥  ∈  ( 𝑊  /   ∼  ) 𝑁  =  ( ( ♯ ‘ ( 𝑊  /   ∼  ) )  ·  𝑁 ) ) | 
						
							| 22 | 7 14 21 | 3eqtrd | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℙ )  →  ( ♯ ‘ 𝑊 )  =  ( ( ♯ ‘ ( 𝑊  /   ∼  ) )  ·  𝑁 ) ) |