| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w |  |-  W = ( N ClWWalksN G ) | 
						
							| 2 |  | erclwwlkn.r |  |-  .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } | 
						
							| 3 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 4 | 3 | fusgrvtxfi |  |-  ( G e. FinUSGraph -> ( Vtx ` G ) e. Fin ) | 
						
							| 5 | 4 | adantr |  |-  ( ( G e. FinUSGraph /\ N e. Prime ) -> ( Vtx ` G ) e. Fin ) | 
						
							| 6 | 1 2 | hashclwwlkn0 |  |-  ( ( Vtx ` G ) e. Fin -> ( # ` W ) = sum_ x e. ( W /. .~ ) ( # ` x ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( G e. FinUSGraph /\ N e. Prime ) -> ( # ` W ) = sum_ x e. ( W /. .~ ) ( # ` x ) ) | 
						
							| 8 |  | fusgrusgr |  |-  ( G e. FinUSGraph -> G e. USGraph ) | 
						
							| 9 |  | usgrumgr |  |-  ( G e. USGraph -> G e. UMGraph ) | 
						
							| 10 | 8 9 | syl |  |-  ( G e. FinUSGraph -> G e. UMGraph ) | 
						
							| 11 | 1 2 | umgrhashecclwwlk |  |-  ( ( G e. UMGraph /\ N e. Prime ) -> ( x e. ( W /. .~ ) -> ( # ` x ) = N ) ) | 
						
							| 12 | 10 11 | sylan |  |-  ( ( G e. FinUSGraph /\ N e. Prime ) -> ( x e. ( W /. .~ ) -> ( # ` x ) = N ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( ( G e. FinUSGraph /\ N e. Prime ) /\ x e. ( W /. .~ ) ) -> ( # ` x ) = N ) | 
						
							| 14 | 13 | sumeq2dv |  |-  ( ( G e. FinUSGraph /\ N e. Prime ) -> sum_ x e. ( W /. .~ ) ( # ` x ) = sum_ x e. ( W /. .~ ) N ) | 
						
							| 15 | 1 2 | qerclwwlknfi |  |-  ( ( Vtx ` G ) e. Fin -> ( W /. .~ ) e. Fin ) | 
						
							| 16 | 5 15 | syl |  |-  ( ( G e. FinUSGraph /\ N e. Prime ) -> ( W /. .~ ) e. Fin ) | 
						
							| 17 |  | prmnn |  |-  ( N e. Prime -> N e. NN ) | 
						
							| 18 | 17 | nncnd |  |-  ( N e. Prime -> N e. CC ) | 
						
							| 19 | 18 | adantl |  |-  ( ( G e. FinUSGraph /\ N e. Prime ) -> N e. CC ) | 
						
							| 20 |  | fsumconst |  |-  ( ( ( W /. .~ ) e. Fin /\ N e. CC ) -> sum_ x e. ( W /. .~ ) N = ( ( # ` ( W /. .~ ) ) x. N ) ) | 
						
							| 21 | 16 19 20 | syl2anc |  |-  ( ( G e. FinUSGraph /\ N e. Prime ) -> sum_ x e. ( W /. .~ ) N = ( ( # ` ( W /. .~ ) ) x. N ) ) | 
						
							| 22 | 7 14 21 | 3eqtrd |  |-  ( ( G e. FinUSGraph /\ N e. Prime ) -> ( # ` W ) = ( ( # ` ( W /. .~ ) ) x. N ) ) |