| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w |  |-  W = ( N ClWWalksN G ) | 
						
							| 2 |  | erclwwlkn.r |  |-  .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } | 
						
							| 3 | 1 2 | eclclwwlkn1 |  |-  ( U e. ( W /. .~ ) -> ( U e. ( W /. .~ ) <-> E. x e. W U = { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) ) | 
						
							| 4 |  | rabeq |  |-  ( W = ( N ClWWalksN G ) -> { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) | 
						
							| 5 | 1 4 | mp1i |  |-  ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) | 
						
							| 6 |  | prmnn |  |-  ( N e. Prime -> N e. NN ) | 
						
							| 7 | 6 | nnnn0d |  |-  ( N e. Prime -> N e. NN0 ) | 
						
							| 8 | 7 | adantl |  |-  ( ( G e. UMGraph /\ N e. Prime ) -> N e. NN0 ) | 
						
							| 9 | 1 | eleq2i |  |-  ( x e. W <-> x e. ( N ClWWalksN G ) ) | 
						
							| 10 | 9 | biimpi |  |-  ( x e. W -> x e. ( N ClWWalksN G ) ) | 
						
							| 11 |  | clwwlknscsh |  |-  ( ( N e. NN0 /\ x e. ( N ClWWalksN G ) ) -> { y e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) | 
						
							| 12 | 8 10 11 | syl2an |  |-  ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> { y e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) | 
						
							| 13 | 5 12 | eqtrd |  |-  ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> ( U = { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } <-> U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) ) | 
						
							| 15 | 6 | adantl |  |-  ( ( G e. UMGraph /\ N e. Prime ) -> N e. NN ) | 
						
							| 16 |  | simpll |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ N e. NN ) -> x e. Word ( Vtx ` G ) ) | 
						
							| 17 |  | elnnne0 |  |-  ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) | 
						
							| 18 |  | eqeq1 |  |-  ( N = ( # ` x ) -> ( N = 0 <-> ( # ` x ) = 0 ) ) | 
						
							| 19 | 18 | eqcoms |  |-  ( ( # ` x ) = N -> ( N = 0 <-> ( # ` x ) = 0 ) ) | 
						
							| 20 |  | hasheq0 |  |-  ( x e. Word ( Vtx ` G ) -> ( ( # ` x ) = 0 <-> x = (/) ) ) | 
						
							| 21 | 19 20 | sylan9bbr |  |-  ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( N = 0 <-> x = (/) ) ) | 
						
							| 22 | 21 | necon3bid |  |-  ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( N =/= 0 <-> x =/= (/) ) ) | 
						
							| 23 | 22 | biimpcd |  |-  ( N =/= 0 -> ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> x =/= (/) ) ) | 
						
							| 24 | 17 23 | simplbiim |  |-  ( N e. NN -> ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> x =/= (/) ) ) | 
						
							| 25 | 24 | impcom |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ N e. NN ) -> x =/= (/) ) | 
						
							| 26 |  | simplr |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ N e. NN ) -> ( # ` x ) = N ) | 
						
							| 27 | 26 | eqcomd |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ N e. NN ) -> N = ( # ` x ) ) | 
						
							| 28 | 16 25 27 | 3jca |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ N e. NN ) -> ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) ) | 
						
							| 29 | 28 | ex |  |-  ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( N e. NN -> ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) ) ) | 
						
							| 30 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 31 | 30 | clwwlknbp |  |-  ( x e. ( N ClWWalksN G ) -> ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) ) | 
						
							| 32 | 29 31 | syl11 |  |-  ( N e. NN -> ( x e. ( N ClWWalksN G ) -> ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) ) ) | 
						
							| 33 | 9 32 | biimtrid |  |-  ( N e. NN -> ( x e. W -> ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) ) ) | 
						
							| 34 | 15 33 | syl |  |-  ( ( G e. UMGraph /\ N e. Prime ) -> ( x e. W -> ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) ) | 
						
							| 36 |  | scshwfzeqfzo |  |-  ( ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) -> { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } ) | 
						
							| 38 | 37 | eqeq2d |  |-  ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } <-> U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } ) ) | 
						
							| 39 |  | fveq2 |  |-  ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) ) | 
						
							| 40 |  | simprl |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) -> G e. UMGraph ) | 
						
							| 41 |  | prmuz2 |  |-  ( ( # ` x ) e. Prime -> ( # ` x ) e. ( ZZ>= ` 2 ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( # ` x ) e. ( ZZ>= ` 2 ) ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) -> ( # ` x ) e. ( ZZ>= ` 2 ) ) | 
						
							| 44 |  | simplr |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) -> x e. ( ( # ` x ) ClWWalksN G ) ) | 
						
							| 45 |  | umgr2cwwkdifex |  |-  ( ( G e. UMGraph /\ ( # ` x ) e. ( ZZ>= ` 2 ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) -> E. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) =/= ( x ` 0 ) ) | 
						
							| 46 | 40 43 44 45 | syl3anc |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) -> E. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) =/= ( x ` 0 ) ) | 
						
							| 47 |  | oveq2 |  |-  ( n = m -> ( x cyclShift n ) = ( x cyclShift m ) ) | 
						
							| 48 | 47 | eqeq2d |  |-  ( n = m -> ( y = ( x cyclShift n ) <-> y = ( x cyclShift m ) ) ) | 
						
							| 49 | 48 | cbvrexvw |  |-  ( E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) <-> E. m e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift m ) ) | 
						
							| 50 |  | eqeq1 |  |-  ( y = u -> ( y = ( x cyclShift m ) <-> u = ( x cyclShift m ) ) ) | 
						
							| 51 |  | eqcom |  |-  ( u = ( x cyclShift m ) <-> ( x cyclShift m ) = u ) | 
						
							| 52 | 50 51 | bitrdi |  |-  ( y = u -> ( y = ( x cyclShift m ) <-> ( x cyclShift m ) = u ) ) | 
						
							| 53 | 52 | rexbidv |  |-  ( y = u -> ( E. m e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift m ) <-> E. m e. ( 0 ..^ ( # ` x ) ) ( x cyclShift m ) = u ) ) | 
						
							| 54 | 49 53 | bitrid |  |-  ( y = u -> ( E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) <-> E. m e. ( 0 ..^ ( # ` x ) ) ( x cyclShift m ) = u ) ) | 
						
							| 55 | 54 | cbvrabv |  |-  { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } = { u e. Word ( Vtx ` G ) | E. m e. ( 0 ..^ ( # ` x ) ) ( x cyclShift m ) = u } | 
						
							| 56 | 55 | cshwshashnsame |  |-  ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) e. Prime ) -> ( E. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) =/= ( x ` 0 ) -> ( # ` { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) = ( # ` x ) ) ) | 
						
							| 57 | 56 | ad2ant2rl |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) -> ( E. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) =/= ( x ` 0 ) -> ( # ` { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) = ( # ` x ) ) ) | 
						
							| 58 | 46 57 | mpd |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) -> ( # ` { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) = ( # ` x ) ) | 
						
							| 59 | 39 58 | sylan9eqr |  |-  ( ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) /\ U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) -> ( # ` U ) = ( # ` x ) ) | 
						
							| 60 | 59 | exp41 |  |-  ( x e. Word ( Vtx ` G ) -> ( x e. ( ( # ` x ) ClWWalksN G ) -> ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( x e. ( ( # ` x ) ClWWalksN G ) -> ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) ) | 
						
							| 62 |  | oveq1 |  |-  ( N = ( # ` x ) -> ( N ClWWalksN G ) = ( ( # ` x ) ClWWalksN G ) ) | 
						
							| 63 | 62 | eleq2d |  |-  ( N = ( # ` x ) -> ( x e. ( N ClWWalksN G ) <-> x e. ( ( # ` x ) ClWWalksN G ) ) ) | 
						
							| 64 |  | eleq1 |  |-  ( N = ( # ` x ) -> ( N e. Prime <-> ( # ` x ) e. Prime ) ) | 
						
							| 65 | 64 | anbi2d |  |-  ( N = ( # ` x ) -> ( ( G e. UMGraph /\ N e. Prime ) <-> ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) ) | 
						
							| 66 |  | oveq2 |  |-  ( N = ( # ` x ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` x ) ) ) | 
						
							| 67 | 66 | rexeqdv |  |-  ( N = ( # ` x ) -> ( E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) <-> E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) ) ) | 
						
							| 68 | 67 | rabbidv |  |-  ( N = ( # ` x ) -> { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) | 
						
							| 69 | 68 | eqeq2d |  |-  ( N = ( # ` x ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } <-> U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) ) | 
						
							| 70 |  | eqeq2 |  |-  ( N = ( # ` x ) -> ( ( # ` U ) = N <-> ( # ` U ) = ( # ` x ) ) ) | 
						
							| 71 | 69 70 | imbi12d |  |-  ( N = ( # ` x ) -> ( ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) <-> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) | 
						
							| 72 | 65 71 | imbi12d |  |-  ( N = ( # ` x ) -> ( ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) <-> ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) ) | 
						
							| 73 | 63 72 | imbi12d |  |-  ( N = ( # ` x ) -> ( ( x e. ( N ClWWalksN G ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) ) <-> ( x e. ( ( # ` x ) ClWWalksN G ) -> ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) ) ) | 
						
							| 74 | 73 | eqcoms |  |-  ( ( # ` x ) = N -> ( ( x e. ( N ClWWalksN G ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) ) <-> ( x e. ( ( # ` x ) ClWWalksN G ) -> ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) ) ) | 
						
							| 75 | 74 | adantl |  |-  ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( ( x e. ( N ClWWalksN G ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) ) <-> ( x e. ( ( # ` x ) ClWWalksN G ) -> ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) ) ) | 
						
							| 76 | 61 75 | mpbird |  |-  ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( x e. ( N ClWWalksN G ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) ) ) | 
						
							| 77 | 31 76 | mpcom |  |-  ( x e. ( N ClWWalksN G ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) ) | 
						
							| 78 | 77 1 | eleq2s |  |-  ( x e. W -> ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) ) | 
						
							| 79 | 78 | impcom |  |-  ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) | 
						
							| 80 | 38 79 | sylbid |  |-  ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) | 
						
							| 81 | 14 80 | sylbid |  |-  ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> ( U = { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) | 
						
							| 82 | 81 | rexlimdva |  |-  ( ( G e. UMGraph /\ N e. Prime ) -> ( E. x e. W U = { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) | 
						
							| 83 | 82 | com12 |  |-  ( E. x e. W U = { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } -> ( ( G e. UMGraph /\ N e. Prime ) -> ( # ` U ) = N ) ) | 
						
							| 84 | 3 83 | biimtrdi |  |-  ( U e. ( W /. .~ ) -> ( U e. ( W /. .~ ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( # ` U ) = N ) ) ) | 
						
							| 85 | 84 | pm2.43i |  |-  ( U e. ( W /. .~ ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( # ` U ) = N ) ) | 
						
							| 86 | 85 | com12 |  |-  ( ( G e. UMGraph /\ N e. Prime ) -> ( U e. ( W /. .~ ) -> ( # ` U ) = N ) ) |