| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwrepswhash1.m |  |-  M = { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } | 
						
							| 2 | 1 | cshwsiun |  |-  ( W e. Word V -> M = U_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } ) | 
						
							| 3 | 2 | ad2antrr |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> M = U_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } ) | 
						
							| 4 | 3 | fveq2d |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( # ` M ) = ( # ` U_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } ) ) | 
						
							| 5 |  | fzofi |  |-  ( 0 ..^ ( # ` W ) ) e. Fin | 
						
							| 6 | 5 | a1i |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( 0 ..^ ( # ` W ) ) e. Fin ) | 
						
							| 7 |  | snfi |  |-  { ( W cyclShift n ) } e. Fin | 
						
							| 8 | 7 | a1i |  |-  ( ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ n e. ( 0 ..^ ( # ` W ) ) ) -> { ( W cyclShift n ) } e. Fin ) | 
						
							| 9 |  | id |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( W e. Word V /\ ( # ` W ) e. Prime ) ) | 
						
							| 10 | 9 | cshwsdisj |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> Disj_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } ) | 
						
							| 11 | 6 8 10 | hashiun |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( # ` U_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } ) = sum_ n e. ( 0 ..^ ( # ` W ) ) ( # ` { ( W cyclShift n ) } ) ) | 
						
							| 12 |  | ovex |  |-  ( W cyclShift n ) e. _V | 
						
							| 13 |  | hashsng |  |-  ( ( W cyclShift n ) e. _V -> ( # ` { ( W cyclShift n ) } ) = 1 ) | 
						
							| 14 | 12 13 | mp1i |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( # ` { ( W cyclShift n ) } ) = 1 ) | 
						
							| 15 | 14 | sumeq2sdv |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> sum_ n e. ( 0 ..^ ( # ` W ) ) ( # ` { ( W cyclShift n ) } ) = sum_ n e. ( 0 ..^ ( # ` W ) ) 1 ) | 
						
							| 16 |  | 1cnd |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> 1 e. CC ) | 
						
							| 17 |  | fsumconst |  |-  ( ( ( 0 ..^ ( # ` W ) ) e. Fin /\ 1 e. CC ) -> sum_ n e. ( 0 ..^ ( # ` W ) ) 1 = ( ( # ` ( 0 ..^ ( # ` W ) ) ) x. 1 ) ) | 
						
							| 18 | 5 16 17 | sylancr |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> sum_ n e. ( 0 ..^ ( # ` W ) ) 1 = ( ( # ` ( 0 ..^ ( # ` W ) ) ) x. 1 ) ) | 
						
							| 19 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 20 | 19 | adantr |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( # ` W ) e. NN0 ) | 
						
							| 21 |  | hashfzo0 |  |-  ( ( # ` W ) e. NN0 -> ( # ` ( 0 ..^ ( # ` W ) ) ) = ( # ` W ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( # ` ( 0 ..^ ( # ` W ) ) ) = ( # ` W ) ) | 
						
							| 23 | 22 | oveq1d |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( # ` ( 0 ..^ ( # ` W ) ) ) x. 1 ) = ( ( # ` W ) x. 1 ) ) | 
						
							| 24 |  | prmnn |  |-  ( ( # ` W ) e. Prime -> ( # ` W ) e. NN ) | 
						
							| 25 | 24 | nnred |  |-  ( ( # ` W ) e. Prime -> ( # ` W ) e. RR ) | 
						
							| 26 | 25 | adantl |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( # ` W ) e. RR ) | 
						
							| 27 |  | ax-1rid |  |-  ( ( # ` W ) e. RR -> ( ( # ` W ) x. 1 ) = ( # ` W ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( # ` W ) x. 1 ) = ( # ` W ) ) | 
						
							| 29 | 18 23 28 | 3eqtrd |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> sum_ n e. ( 0 ..^ ( # ` W ) ) 1 = ( # ` W ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> sum_ n e. ( 0 ..^ ( # ` W ) ) 1 = ( # ` W ) ) | 
						
							| 31 | 15 30 | eqtrd |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> sum_ n e. ( 0 ..^ ( # ` W ) ) ( # ` { ( W cyclShift n ) } ) = ( # ` W ) ) | 
						
							| 32 | 4 11 31 | 3eqtrd |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( # ` M ) = ( # ` W ) ) | 
						
							| 33 | 32 | ex |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) -> ( # ` M ) = ( # ` W ) ) ) |