| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwrepswhash1.m |  |-  M = { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } | 
						
							| 2 |  | repswsymballbi |  |-  ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 4 |  | prmnn |  |-  ( ( # ` W ) e. Prime -> ( # ` W ) e. NN ) | 
						
							| 5 | 4 | nnge1d |  |-  ( ( # ` W ) e. Prime -> 1 <_ ( # ` W ) ) | 
						
							| 6 |  | wrdsymb1 |  |-  ( ( W e. Word V /\ 1 <_ ( # ` W ) ) -> ( W ` 0 ) e. V ) | 
						
							| 7 | 5 6 | sylan2 |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( W ` 0 ) e. V ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( W ` 0 ) e. V ) | 
						
							| 9 | 4 | ad2antlr |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( # ` W ) e. NN ) | 
						
							| 10 |  | simpr |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) | 
						
							| 11 | 1 | cshwrepswhash1 |  |-  ( ( ( W ` 0 ) e. V /\ ( # ` W ) e. NN /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( # ` M ) = 1 ) | 
						
							| 12 | 8 9 10 11 | syl3anc |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( # ` M ) = 1 ) | 
						
							| 13 | 12 | ex |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) -> ( # ` M ) = 1 ) ) | 
						
							| 14 | 3 13 | sylbird |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( # ` M ) = 1 ) ) | 
						
							| 15 |  | olc |  |-  ( ( # ` M ) = 1 -> ( ( # ` M ) = ( # ` W ) \/ ( # ` M ) = 1 ) ) | 
						
							| 16 | 14 15 | syl6com |  |-  ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( # ` M ) = ( # ` W ) \/ ( # ` M ) = 1 ) ) ) | 
						
							| 17 |  | rexnal |  |-  ( E. i e. ( 0 ..^ ( # ` W ) ) -. ( W ` i ) = ( W ` 0 ) <-> -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) | 
						
							| 18 |  | df-ne |  |-  ( ( W ` i ) =/= ( W ` 0 ) <-> -. ( W ` i ) = ( W ` 0 ) ) | 
						
							| 19 | 18 | bicomi |  |-  ( -. ( W ` i ) = ( W ` 0 ) <-> ( W ` i ) =/= ( W ` 0 ) ) | 
						
							| 20 | 19 | rexbii |  |-  ( E. i e. ( 0 ..^ ( # ` W ) ) -. ( W ` i ) = ( W ` 0 ) <-> E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) | 
						
							| 21 | 17 20 | bitr3i |  |-  ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) | 
						
							| 22 | 1 | cshwshashnsame |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) -> ( # ` M ) = ( # ` W ) ) ) | 
						
							| 23 |  | orc |  |-  ( ( # ` M ) = ( # ` W ) -> ( ( # ` M ) = ( # ` W ) \/ ( # ` M ) = 1 ) ) | 
						
							| 24 | 22 23 | syl6com |  |-  ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( # ` M ) = ( # ` W ) \/ ( # ` M ) = 1 ) ) ) | 
						
							| 25 | 21 24 | sylbi |  |-  ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( # ` M ) = ( # ` W ) \/ ( # ` M ) = 1 ) ) ) | 
						
							| 26 | 16 25 | pm2.61i |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( # ` M ) = ( # ` W ) \/ ( # ` M ) = 1 ) ) |