| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwrepswhash1.m | ⊢ 𝑀  =  { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 } | 
						
							| 2 |  | repswsymballbi | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 4 |  | prmnn | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℙ  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 5 | 4 | nnge1d | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℙ  →  1  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 6 |  | wrdsymb1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) | 
						
							| 7 | 5 6 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) | 
						
							| 9 | 4 | ad2antlr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) )  →  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 11 | 1 | cshwrepswhash1 | ⊢ ( ( ( 𝑊 ‘ 0 )  ∈  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ 𝑀 )  =  1 ) | 
						
							| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ 𝑀 )  =  1 ) | 
						
							| 13 | 12 | ex | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑀 )  =  1 ) ) | 
						
							| 14 | 3 13 | sylbird | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  →  ( ♯ ‘ 𝑀 )  =  1 ) ) | 
						
							| 15 |  | olc | ⊢ ( ( ♯ ‘ 𝑀 )  =  1  →  ( ( ♯ ‘ 𝑀 )  =  ( ♯ ‘ 𝑊 )  ∨  ( ♯ ‘ 𝑀 )  =  1 ) ) | 
						
							| 16 | 14 15 | syl6com | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( ( ♯ ‘ 𝑀 )  =  ( ♯ ‘ 𝑊 )  ∨  ( ♯ ‘ 𝑀 )  =  1 ) ) ) | 
						
							| 17 |  | rexnal | ⊢ ( ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ¬  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  ↔  ¬  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 18 |  | df-ne | ⊢ ( ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 )  ↔  ¬  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 19 | 18 | bicomi | ⊢ ( ¬  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  ↔  ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) ) | 
						
							| 20 | 19 | rexbii | ⊢ ( ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ¬  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  ↔  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) ) | 
						
							| 21 | 17 20 | bitr3i | ⊢ ( ¬  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  ↔  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) ) | 
						
							| 22 | 1 | cshwshashnsame | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 )  →  ( ♯ ‘ 𝑀 )  =  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 23 |  | orc | ⊢ ( ( ♯ ‘ 𝑀 )  =  ( ♯ ‘ 𝑊 )  →  ( ( ♯ ‘ 𝑀 )  =  ( ♯ ‘ 𝑊 )  ∨  ( ♯ ‘ 𝑀 )  =  1 ) ) | 
						
							| 24 | 22 23 | syl6com | ⊢ ( ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( ( ♯ ‘ 𝑀 )  =  ( ♯ ‘ 𝑊 )  ∨  ( ♯ ‘ 𝑀 )  =  1 ) ) ) | 
						
							| 25 | 21 24 | sylbi | ⊢ ( ¬  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( ( ♯ ‘ 𝑀 )  =  ( ♯ ‘ 𝑊 )  ∨  ( ♯ ‘ 𝑀 )  =  1 ) ) ) | 
						
							| 26 | 16 25 | pm2.61i | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( ( ♯ ‘ 𝑀 )  =  ( ♯ ‘ 𝑊 )  ∨  ( ♯ ‘ 𝑀 )  =  1 ) ) |