| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwrepswhash1.m | ⊢ 𝑀  =  { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 } | 
						
							| 2 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 |  | repsdf2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  =  ( 𝐴  repeatS  𝑁 )  ↔  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 ) ) ) | 
						
							| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  =  ( 𝐴  repeatS  𝑁 )  ↔  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 ) ) ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 7 |  | eleq1 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑊 )  →  ( 𝑁  ∈  ℕ  ↔  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) | 
						
							| 8 | 7 | eqcoms | ⊢ ( ( ♯ ‘ 𝑊 )  =  𝑁  →  ( 𝑁  ∈  ℕ  ↔  ( ♯ ‘ 𝑊 )  ∈  ℕ ) ) | 
						
							| 9 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 10 | 9 | biimpri | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 11 | 8 10 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑊 )  =  𝑁  →  ( 𝑁  ∈  ℕ  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 )  →  ( 𝑁  ∈  ℕ  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 13 | 12 | com12 | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 ) )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 16 |  | cshw0 | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  cyclShift  0 )  =  𝑊 ) | 
						
							| 17 | 6 16 | syl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 ) )  →  ( 𝑊  cyclShift  0 )  =  𝑊 ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑛  =  0  →  ( 𝑊  cyclShift  𝑛 )  =  ( 𝑊  cyclShift  0 ) ) | 
						
							| 19 | 18 | eqeq1d | ⊢ ( 𝑛  =  0  →  ( ( 𝑊  cyclShift  𝑛 )  =  𝑊  ↔  ( 𝑊  cyclShift  0 )  =  𝑊 ) ) | 
						
							| 20 | 19 | rspcev | ⊢ ( ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( 𝑊  cyclShift  0 )  =  𝑊 )  →  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑊 ) | 
						
							| 21 | 15 17 20 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 ) )  →  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑊 ) | 
						
							| 22 |  | eqeq2 | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑊  cyclShift  𝑛 )  =  𝑤  ↔  ( 𝑊  cyclShift  𝑛 )  =  𝑊 ) ) | 
						
							| 23 | 22 | rexbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤  ↔  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑊 ) ) | 
						
							| 24 | 23 | rspcev | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑊 )  →  ∃ 𝑤  ∈  Word  𝑉 ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) | 
						
							| 25 | 6 21 24 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 ) )  →  ∃ 𝑤  ∈  Word  𝑉 ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) | 
						
							| 26 | 25 | ex | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 )  →  ∃ 𝑤  ∈  Word  𝑉 ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) ) | 
						
							| 27 | 4 26 | sylbid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  =  ( 𝐴  repeatS  𝑁 )  →  ∃ 𝑤  ∈  Word  𝑉 ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) ) | 
						
							| 28 | 27 | 3impia | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  →  ∃ 𝑤  ∈  Word  𝑉 ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) | 
						
							| 29 |  | repsw | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  repeatS  𝑁 )  ∈  Word  𝑉 ) | 
						
							| 30 | 2 29 | sylan2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝐴  repeatS  𝑁 )  ∈  Word  𝑉 ) | 
						
							| 31 | 30 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  →  ( 𝐴  repeatS  𝑁 )  ∈  Word  𝑉 ) | 
						
							| 32 |  | simpll3 | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  ∧  𝑢  ∈  Word  𝑉 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑊  =  ( 𝐴  repeatS  𝑁 ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  ∧  𝑢  ∈  Word  𝑉 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝑛 )  =  ( ( 𝐴  repeatS  𝑁 )  cyclShift  𝑛 ) ) | 
						
							| 34 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 35 | 34 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  ∧  𝑢  ∈  Word  𝑉 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 36 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 37 | 36 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  ∧  𝑢  ∈  Word  𝑉 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 38 |  | elfzoelz | ⊢ ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  ∧  𝑢  ∈  Word  𝑉 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 40 |  | repswcshw | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  ( ( 𝐴  repeatS  𝑁 )  cyclShift  𝑛 )  =  ( 𝐴  repeatS  𝑁 ) ) | 
						
							| 41 | 35 37 39 40 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  ∧  𝑢  ∈  Word  𝑉 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐴  repeatS  𝑁 )  cyclShift  𝑛 )  =  ( 𝐴  repeatS  𝑁 ) ) | 
						
							| 42 | 33 41 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  ∧  𝑢  ∈  Word  𝑉 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝑛 )  =  ( 𝐴  repeatS  𝑁 ) ) | 
						
							| 43 | 42 | eqeq1d | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  ∧  𝑢  ∈  Word  𝑉 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑛 )  =  𝑢  ↔  ( 𝐴  repeatS  𝑁 )  =  𝑢 ) ) | 
						
							| 44 | 43 | biimpd | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  ∧  𝑢  ∈  Word  𝑉 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑛 )  =  𝑢  →  ( 𝐴  repeatS  𝑁 )  =  𝑢 ) ) | 
						
							| 45 | 44 | rexlimdva | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  ∧  𝑢  ∈  Word  𝑉 )  →  ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑢  →  ( 𝐴  repeatS  𝑁 )  =  𝑢 ) ) | 
						
							| 46 | 45 | ralrimiva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  →  ∀ 𝑢  ∈  Word  𝑉 ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑢  →  ( 𝐴  repeatS  𝑁 )  =  𝑢 ) ) | 
						
							| 47 |  | eqeq1 | ⊢ ( 𝑤  =  ( 𝐴  repeatS  𝑁 )  →  ( 𝑤  =  𝑢  ↔  ( 𝐴  repeatS  𝑁 )  =  𝑢 ) ) | 
						
							| 48 | 47 | imbi2d | ⊢ ( 𝑤  =  ( 𝐴  repeatS  𝑁 )  →  ( ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑢  →  𝑤  =  𝑢 )  ↔  ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑢  →  ( 𝐴  repeatS  𝑁 )  =  𝑢 ) ) ) | 
						
							| 49 | 48 | ralbidv | ⊢ ( 𝑤  =  ( 𝐴  repeatS  𝑁 )  →  ( ∀ 𝑢  ∈  Word  𝑉 ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑢  →  𝑤  =  𝑢 )  ↔  ∀ 𝑢  ∈  Word  𝑉 ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑢  →  ( 𝐴  repeatS  𝑁 )  =  𝑢 ) ) ) | 
						
							| 50 | 49 | rspcev | ⊢ ( ( ( 𝐴  repeatS  𝑁 )  ∈  Word  𝑉  ∧  ∀ 𝑢  ∈  Word  𝑉 ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑢  →  ( 𝐴  repeatS  𝑁 )  =  𝑢 ) )  →  ∃ 𝑤  ∈  Word  𝑉 ∀ 𝑢  ∈  Word  𝑉 ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑢  →  𝑤  =  𝑢 ) ) | 
						
							| 51 | 31 46 50 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  →  ∃ 𝑤  ∈  Word  𝑉 ∀ 𝑢  ∈  Word  𝑉 ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑢  →  𝑤  =  𝑢 ) ) | 
						
							| 52 |  | eqeq2 | ⊢ ( 𝑤  =  𝑢  →  ( ( 𝑊  cyclShift  𝑛 )  =  𝑤  ↔  ( 𝑊  cyclShift  𝑛 )  =  𝑢 ) ) | 
						
							| 53 | 52 | rexbidv | ⊢ ( 𝑤  =  𝑢  →  ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤  ↔  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑢 ) ) | 
						
							| 54 | 53 | reu7 | ⊢ ( ∃! 𝑤  ∈  Word  𝑉 ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤  ↔  ( ∃ 𝑤  ∈  Word  𝑉 ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤  ∧  ∃ 𝑤  ∈  Word  𝑉 ∀ 𝑢  ∈  Word  𝑉 ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑢  →  𝑤  =  𝑢 ) ) ) | 
						
							| 55 | 28 51 54 | sylanbrc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  →  ∃! 𝑤  ∈  Word  𝑉 ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) | 
						
							| 56 |  | reusn | ⊢ ( ∃! 𝑤  ∈  Word  𝑉 ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤  ↔  ∃ 𝑟 { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  =  { 𝑟 } ) | 
						
							| 57 | 55 56 | sylib | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  →  ∃ 𝑟 { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  =  { 𝑟 } ) | 
						
							| 58 | 1 | eqeq1i | ⊢ ( 𝑀  =  { 𝑟 }  ↔  { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  =  { 𝑟 } ) | 
						
							| 59 | 58 | exbii | ⊢ ( ∃ 𝑟 𝑀  =  { 𝑟 }  ↔  ∃ 𝑟 { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  =  { 𝑟 } ) | 
						
							| 60 | 57 59 | sylibr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  →  ∃ 𝑟 𝑀  =  { 𝑟 } ) | 
						
							| 61 | 1 | cshwsex | ⊢ ( 𝑊  ∈  Word  𝑉  →  𝑀  ∈  V ) | 
						
							| 62 | 61 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  𝐴 )  →  𝑀  ∈  V ) | 
						
							| 63 | 4 62 | biimtrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑊  =  ( 𝐴  repeatS  𝑁 )  →  𝑀  ∈  V ) ) | 
						
							| 64 | 63 | 3impia | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  →  𝑀  ∈  V ) | 
						
							| 65 |  | hash1snb | ⊢ ( 𝑀  ∈  V  →  ( ( ♯ ‘ 𝑀 )  =  1  ↔  ∃ 𝑟 𝑀  =  { 𝑟 } ) ) | 
						
							| 66 | 64 65 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  →  ( ( ♯ ‘ 𝑀 )  =  1  ↔  ∃ 𝑟 𝑀  =  { 𝑟 } ) ) | 
						
							| 67 | 60 66 | mpbird | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝑊  =  ( 𝐴  repeatS  𝑁 ) )  →  ( ♯ ‘ 𝑀 )  =  1 ) |