| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0csh0 | ⊢ ( ∅  cyclShift  𝐼 )  =  ∅ | 
						
							| 2 |  | repsw0 | ⊢ ( 𝑆  ∈  𝑉  →  ( 𝑆  repeatS  0 )  =  ∅ ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( 𝑆  ∈  𝑉  →  ( ( 𝑆  repeatS  0 )  cyclShift  𝐼 )  =  ( ∅  cyclShift  𝐼 ) ) | 
						
							| 4 | 1 3 2 | 3eqtr4a | ⊢ ( 𝑆  ∈  𝑉  →  ( ( 𝑆  repeatS  0 )  cyclShift  𝐼 )  =  ( 𝑆  repeatS  0 ) ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ0  ∧  𝐼  ∈  ℤ )  →  ( ( 𝑆  repeatS  0 )  cyclShift  𝐼 )  =  ( 𝑆  repeatS  0 ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 𝑆  repeatS  𝑁 )  =  ( 𝑆  repeatS  0 ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝑁  =  0  →  ( ( 𝑆  repeatS  𝑁 )  cyclShift  𝐼 )  =  ( ( 𝑆  repeatS  0 )  cyclShift  𝐼 ) ) | 
						
							| 8 | 7 6 | eqeq12d | ⊢ ( 𝑁  =  0  →  ( ( ( 𝑆  repeatS  𝑁 )  cyclShift  𝐼 )  =  ( 𝑆  repeatS  𝑁 )  ↔  ( ( 𝑆  repeatS  0 )  cyclShift  𝐼 )  =  ( 𝑆  repeatS  0 ) ) ) | 
						
							| 9 | 5 8 | imbitrrid | ⊢ ( 𝑁  =  0  →  ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ0  ∧  𝐼  ∈  ℤ )  →  ( ( 𝑆  repeatS  𝑁 )  cyclShift  𝐼 )  =  ( 𝑆  repeatS  𝑁 ) ) ) | 
						
							| 10 |  | idd | ⊢ ( ¬  𝑁  =  0  →  ( 𝑆  ∈  𝑉  →  𝑆  ∈  𝑉 ) ) | 
						
							| 11 |  | df-ne | ⊢ ( 𝑁  ≠  0  ↔  ¬  𝑁  =  0 ) | 
						
							| 12 |  | elnnne0 | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  ∈  ℕ0  ∧  𝑁  ≠  0 ) ) | 
						
							| 13 | 12 | simplbi2com | ⊢ ( 𝑁  ≠  0  →  ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℕ ) ) | 
						
							| 14 | 11 13 | sylbir | ⊢ ( ¬  𝑁  =  0  →  ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℕ ) ) | 
						
							| 15 |  | idd | ⊢ ( ¬  𝑁  =  0  →  ( 𝐼  ∈  ℤ  →  𝐼  ∈  ℤ ) ) | 
						
							| 16 | 10 14 15 | 3anim123d | ⊢ ( ¬  𝑁  =  0  →  ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ0  ∧  𝐼  ∈  ℤ )  →  ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ ) ) ) | 
						
							| 17 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 18 | 17 | anim2i | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 19 |  | repsw | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑆  repeatS  𝑁 )  ∈  Word  𝑉 ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑆  repeatS  𝑁 )  ∈  Word  𝑉 ) | 
						
							| 21 |  | cshword | ⊢ ( ( ( 𝑆  repeatS  𝑁 )  ∈  Word  𝑉  ∧  𝐼  ∈  ℤ )  →  ( ( 𝑆  repeatS  𝑁 )  cyclShift  𝐼 )  =  ( ( ( 𝑆  repeatS  𝑁 )  substr  〈 ( 𝐼  mod  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) ) ,  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) 〉 )  ++  ( ( 𝑆  repeatS  𝑁 )  prefix  ( 𝐼  mod  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) ) ) ) ) | 
						
							| 22 | 20 21 | stoic3 | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( 𝑆  repeatS  𝑁 )  cyclShift  𝐼 )  =  ( ( ( 𝑆  repeatS  𝑁 )  substr  〈 ( 𝐼  mod  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) ) ,  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) 〉 )  ++  ( ( 𝑆  repeatS  𝑁 )  prefix  ( 𝐼  mod  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) ) ) ) ) | 
						
							| 23 |  | repswlen | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) )  =  𝑁 ) | 
						
							| 24 | 18 23 | syl | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) )  =  𝑁 ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝐼  mod  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) )  =  ( 𝐼  mod  𝑁 ) ) | 
						
							| 26 | 25 24 | opeq12d | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  〈 ( 𝐼  mod  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) ) ,  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) 〉  =  〈 ( 𝐼  mod  𝑁 ) ,  𝑁 〉 ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑆  repeatS  𝑁 )  substr  〈 ( 𝐼  mod  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) ) ,  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) 〉 )  =  ( ( 𝑆  repeatS  𝑁 )  substr  〈 ( 𝐼  mod  𝑁 ) ,  𝑁 〉 ) ) | 
						
							| 28 | 25 | oveq2d | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑆  repeatS  𝑁 )  prefix  ( 𝐼  mod  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) ) )  =  ( ( 𝑆  repeatS  𝑁 )  prefix  ( 𝐼  mod  𝑁 ) ) ) | 
						
							| 29 | 27 28 | oveq12d | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( ( ( 𝑆  repeatS  𝑁 )  substr  〈 ( 𝐼  mod  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) ) ,  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) 〉 )  ++  ( ( 𝑆  repeatS  𝑁 )  prefix  ( 𝐼  mod  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) ) ) )  =  ( ( ( 𝑆  repeatS  𝑁 )  substr  〈 ( 𝐼  mod  𝑁 ) ,  𝑁 〉 )  ++  ( ( 𝑆  repeatS  𝑁 )  prefix  ( 𝐼  mod  𝑁 ) ) ) ) | 
						
							| 30 | 29 | 3adant3 | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( ( 𝑆  repeatS  𝑁 )  substr  〈 ( 𝐼  mod  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) ) ,  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) 〉 )  ++  ( ( 𝑆  repeatS  𝑁 )  prefix  ( 𝐼  mod  ( ♯ ‘ ( 𝑆  repeatS  𝑁 ) ) ) ) )  =  ( ( ( 𝑆  repeatS  𝑁 )  substr  〈 ( 𝐼  mod  𝑁 ) ,  𝑁 〉 )  ++  ( ( 𝑆  repeatS  𝑁 )  prefix  ( 𝐼  mod  𝑁 ) ) ) ) | 
						
							| 31 | 18 | 3adant3 | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 32 |  | zmodcl | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝐼  mod  𝑁 )  ∈  ℕ0 ) | 
						
							| 33 | 32 | ancoms | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( 𝐼  mod  𝑁 )  ∈  ℕ0 ) | 
						
							| 34 | 17 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 35 | 33 34 | jca | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( 𝐼  mod  𝑁 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 36 | 35 | 3adant1 | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( 𝐼  mod  𝑁 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 37 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 38 | 37 | leidd | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≤  𝑁 ) | 
						
							| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  𝑁  ≤  𝑁 ) | 
						
							| 40 |  | repswswrd | ⊢ ( ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  ∧  ( ( 𝐼  mod  𝑁 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  𝑁  ≤  𝑁 )  →  ( ( 𝑆  repeatS  𝑁 )  substr  〈 ( 𝐼  mod  𝑁 ) ,  𝑁 〉 )  =  ( 𝑆  repeatS  ( 𝑁  −  ( 𝐼  mod  𝑁 ) ) ) ) | 
						
							| 41 | 31 36 39 40 | syl3anc | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( 𝑆  repeatS  𝑁 )  substr  〈 ( 𝐼  mod  𝑁 ) ,  𝑁 〉 )  =  ( 𝑆  repeatS  ( 𝑁  −  ( 𝐼  mod  𝑁 ) ) ) ) | 
						
							| 42 |  | simp1 | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  𝑆  ∈  𝑉 ) | 
						
							| 43 | 17 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 44 |  | zmodfzp1 | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝐼  mod  𝑁 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 45 | 44 | ancoms | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( 𝐼  mod  𝑁 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 46 | 45 | 3adant1 | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( 𝐼  mod  𝑁 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 47 |  | repswpfx | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ0  ∧  ( 𝐼  mod  𝑁 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑆  repeatS  𝑁 )  prefix  ( 𝐼  mod  𝑁 ) )  =  ( 𝑆  repeatS  ( 𝐼  mod  𝑁 ) ) ) | 
						
							| 48 | 42 43 46 47 | syl3anc | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( 𝑆  repeatS  𝑁 )  prefix  ( 𝐼  mod  𝑁 ) )  =  ( 𝑆  repeatS  ( 𝐼  mod  𝑁 ) ) ) | 
						
							| 49 | 41 48 | oveq12d | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( ( 𝑆  repeatS  𝑁 )  substr  〈 ( 𝐼  mod  𝑁 ) ,  𝑁 〉 )  ++  ( ( 𝑆  repeatS  𝑁 )  prefix  ( 𝐼  mod  𝑁 ) ) )  =  ( ( 𝑆  repeatS  ( 𝑁  −  ( 𝐼  mod  𝑁 ) ) )  ++  ( 𝑆  repeatS  ( 𝐼  mod  𝑁 ) ) ) ) | 
						
							| 50 | 32 | nn0red | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝐼  mod  𝑁 )  ∈  ℝ ) | 
						
							| 51 | 50 | ancoms | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( 𝐼  mod  𝑁 )  ∈  ℝ ) | 
						
							| 52 | 37 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  𝑁  ∈  ℝ ) | 
						
							| 53 |  | zre | ⊢ ( 𝐼  ∈  ℤ  →  𝐼  ∈  ℝ ) | 
						
							| 54 |  | nnrp | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ+ ) | 
						
							| 55 |  | modlt | ⊢ ( ( 𝐼  ∈  ℝ  ∧  𝑁  ∈  ℝ+ )  →  ( 𝐼  mod  𝑁 )  <  𝑁 ) | 
						
							| 56 | 53 54 55 | syl2anr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( 𝐼  mod  𝑁 )  <  𝑁 ) | 
						
							| 57 | 51 52 56 | ltled | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( 𝐼  mod  𝑁 )  ≤  𝑁 ) | 
						
							| 58 | 57 | 3adant1 | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( 𝐼  mod  𝑁 )  ≤  𝑁 ) | 
						
							| 59 | 33 | 3adant1 | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( 𝐼  mod  𝑁 )  ∈  ℕ0 ) | 
						
							| 60 |  | nn0sub | ⊢ ( ( ( 𝐼  mod  𝑁 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐼  mod  𝑁 )  ≤  𝑁  ↔  ( 𝑁  −  ( 𝐼  mod  𝑁 ) )  ∈  ℕ0 ) ) | 
						
							| 61 | 59 43 60 | syl2anc | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( 𝐼  mod  𝑁 )  ≤  𝑁  ↔  ( 𝑁  −  ( 𝐼  mod  𝑁 ) )  ∈  ℕ0 ) ) | 
						
							| 62 | 58 61 | mpbid | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( 𝑁  −  ( 𝐼  mod  𝑁 ) )  ∈  ℕ0 ) | 
						
							| 63 |  | repswccat | ⊢ ( ( 𝑆  ∈  𝑉  ∧  ( 𝑁  −  ( 𝐼  mod  𝑁 ) )  ∈  ℕ0  ∧  ( 𝐼  mod  𝑁 )  ∈  ℕ0 )  →  ( ( 𝑆  repeatS  ( 𝑁  −  ( 𝐼  mod  𝑁 ) ) )  ++  ( 𝑆  repeatS  ( 𝐼  mod  𝑁 ) ) )  =  ( 𝑆  repeatS  ( ( 𝑁  −  ( 𝐼  mod  𝑁 ) )  +  ( 𝐼  mod  𝑁 ) ) ) ) | 
						
							| 64 | 42 62 59 63 | syl3anc | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( 𝑆  repeatS  ( 𝑁  −  ( 𝐼  mod  𝑁 ) ) )  ++  ( 𝑆  repeatS  ( 𝐼  mod  𝑁 ) ) )  =  ( 𝑆  repeatS  ( ( 𝑁  −  ( 𝐼  mod  𝑁 ) )  +  ( 𝐼  mod  𝑁 ) ) ) ) | 
						
							| 65 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℂ ) | 
						
							| 67 | 32 | nn0cnd | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝐼  mod  𝑁 )  ∈  ℂ ) | 
						
							| 68 | 66 67 | npcand | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑁  −  ( 𝐼  mod  𝑁 ) )  +  ( 𝐼  mod  𝑁 ) )  =  𝑁 ) | 
						
							| 69 | 68 | ancoms | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( 𝑁  −  ( 𝐼  mod  𝑁 ) )  +  ( 𝐼  mod  𝑁 ) )  =  𝑁 ) | 
						
							| 70 | 69 | 3adant1 | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( 𝑁  −  ( 𝐼  mod  𝑁 ) )  +  ( 𝐼  mod  𝑁 ) )  =  𝑁 ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( 𝑆  repeatS  ( ( 𝑁  −  ( 𝐼  mod  𝑁 ) )  +  ( 𝐼  mod  𝑁 ) ) )  =  ( 𝑆  repeatS  𝑁 ) ) | 
						
							| 72 | 49 64 71 | 3eqtrd | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( ( 𝑆  repeatS  𝑁 )  substr  〈 ( 𝐼  mod  𝑁 ) ,  𝑁 〉 )  ++  ( ( 𝑆  repeatS  𝑁 )  prefix  ( 𝐼  mod  𝑁 ) ) )  =  ( 𝑆  repeatS  𝑁 ) ) | 
						
							| 73 | 22 30 72 | 3eqtrd | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ  ∧  𝐼  ∈  ℤ )  →  ( ( 𝑆  repeatS  𝑁 )  cyclShift  𝐼 )  =  ( 𝑆  repeatS  𝑁 ) ) | 
						
							| 74 | 16 73 | syl6 | ⊢ ( ¬  𝑁  =  0  →  ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ0  ∧  𝐼  ∈  ℤ )  →  ( ( 𝑆  repeatS  𝑁 )  cyclShift  𝐼 )  =  ( 𝑆  repeatS  𝑁 ) ) ) | 
						
							| 75 | 9 74 | pm2.61i | ⊢ ( ( 𝑆  ∈  𝑉  ∧  𝑁  ∈  ℕ0  ∧  𝐼  ∈  ℤ )  →  ( ( 𝑆  repeatS  𝑁 )  cyclShift  𝐼 )  =  ( 𝑆  repeatS  𝑁 ) ) |