| Step |
Hyp |
Ref |
Expression |
| 1 |
|
repsf |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) |
| 2 |
|
ffn |
⊢ ( ( 𝑆 repeatS 𝑁 ) : ( 0 ..^ 𝑁 ) ⟶ 𝑉 → ( 𝑆 repeatS 𝑁 ) Fn ( 0 ..^ 𝑁 ) ) |
| 3 |
|
hashfn |
⊢ ( ( 𝑆 repeatS 𝑁 ) Fn ( 0 ..^ 𝑁 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
| 4 |
1 2 3
|
3syl |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
| 5 |
|
hashfzo0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
| 7 |
4 6
|
eqtrd |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ) |