| Step |
Hyp |
Ref |
Expression |
| 1 |
|
repsf |
|- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) : ( 0 ..^ N ) --> V ) |
| 2 |
|
ffn |
|- ( ( S repeatS N ) : ( 0 ..^ N ) --> V -> ( S repeatS N ) Fn ( 0 ..^ N ) ) |
| 3 |
|
hashfn |
|- ( ( S repeatS N ) Fn ( 0 ..^ N ) -> ( # ` ( S repeatS N ) ) = ( # ` ( 0 ..^ N ) ) ) |
| 4 |
1 2 3
|
3syl |
|- ( ( S e. V /\ N e. NN0 ) -> ( # ` ( S repeatS N ) ) = ( # ` ( 0 ..^ N ) ) ) |
| 5 |
|
hashfzo0 |
|- ( N e. NN0 -> ( # ` ( 0 ..^ N ) ) = N ) |
| 6 |
5
|
adantl |
|- ( ( S e. V /\ N e. NN0 ) -> ( # ` ( 0 ..^ N ) ) = N ) |
| 7 |
4 6
|
eqtrd |
|- ( ( S e. V /\ N e. NN0 ) -> ( # ` ( S repeatS N ) ) = N ) |