| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwrepswhash1.m | ⊢ 𝑀  =  { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 } | 
						
							| 2 | 1 | cshwsiun | ⊢ ( 𝑊  ∈  Word  𝑉  →  𝑀  =  ∪  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊  cyclShift  𝑛 ) } ) | 
						
							| 3 |  | ovex | ⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∈  V | 
						
							| 4 |  | snex | ⊢ { ( 𝑊  cyclShift  𝑛 ) }  ∈  V | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑊  ∈  Word  𝑉  →  { ( 𝑊  cyclShift  𝑛 ) }  ∈  V ) | 
						
							| 6 | 5 | ralrimivw | ⊢ ( 𝑊  ∈  Word  𝑉  →  ∀ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊  cyclShift  𝑛 ) }  ∈  V ) | 
						
							| 7 |  | iunexg | ⊢ ( ( ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∈  V  ∧  ∀ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊  cyclShift  𝑛 ) }  ∈  V )  →  ∪  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊  cyclShift  𝑛 ) }  ∈  V ) | 
						
							| 8 | 3 6 7 | sylancr | ⊢ ( 𝑊  ∈  Word  𝑉  →  ∪  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊  cyclShift  𝑛 ) }  ∈  V ) | 
						
							| 9 | 2 8 | eqeltrd | ⊢ ( 𝑊  ∈  Word  𝑉  →  𝑀  ∈  V ) |