| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwrepswhash1.m | ⊢ 𝑀  =  { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 } | 
						
							| 2 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 3 |  | eleq1 | ⊢ ( 𝑊  =  ∅  →  ( 𝑊  ∈  V  ↔  ∅  ∈  V ) ) | 
						
							| 4 | 2 3 | mpbiri | ⊢ ( 𝑊  =  ∅  →  𝑊  ∈  V ) | 
						
							| 5 |  | hasheq0 | ⊢ ( 𝑊  ∈  V  →  ( ( ♯ ‘ 𝑊 )  =  0  ↔  𝑊  =  ∅ ) ) | 
						
							| 6 | 5 | bicomd | ⊢ ( 𝑊  ∈  V  →  ( 𝑊  =  ∅  ↔  ( ♯ ‘ 𝑊 )  =  0 ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝑊  =  ∅  →  ( 𝑊  =  ∅  ↔  ( ♯ ‘ 𝑊 )  =  0 ) ) | 
						
							| 8 | 7 | ibi | ⊢ ( 𝑊  =  ∅  →  ( ♯ ‘ 𝑊 )  =  0 ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑊  =  ∅  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ..^ 0 ) ) | 
						
							| 10 |  | fzo0 | ⊢ ( 0 ..^ 0 )  =  ∅ | 
						
							| 11 | 9 10 | eqtrdi | ⊢ ( 𝑊  =  ∅  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ∅ ) | 
						
							| 12 | 11 | rexeqdv | ⊢ ( 𝑊  =  ∅  →  ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤  ↔  ∃ 𝑛  ∈  ∅ ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) ) | 
						
							| 13 | 12 | rabbidv | ⊢ ( 𝑊  =  ∅  →  { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  =  { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ∅ ( 𝑊  cyclShift  𝑛 )  =  𝑤 } ) | 
						
							| 14 |  | rex0 | ⊢ ¬  ∃ 𝑛  ∈  ∅ ( 𝑊  cyclShift  𝑛 )  =  𝑤 | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑊  =  ∅  →  ¬  ∃ 𝑛  ∈  ∅ ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) | 
						
							| 16 | 15 | ralrimivw | ⊢ ( 𝑊  =  ∅  →  ∀ 𝑤  ∈  Word  𝑉 ¬  ∃ 𝑛  ∈  ∅ ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) | 
						
							| 17 |  | rabeq0 | ⊢ ( { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ∅ ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  =  ∅  ↔  ∀ 𝑤  ∈  Word  𝑉 ¬  ∃ 𝑛  ∈  ∅ ( 𝑊  cyclShift  𝑛 )  =  𝑤 ) | 
						
							| 18 | 16 17 | sylibr | ⊢ ( 𝑊  =  ∅  →  { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ∅ ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  =  ∅ ) | 
						
							| 19 | 13 18 | eqtrd | ⊢ ( 𝑊  =  ∅  →  { 𝑤  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊  cyclShift  𝑛 )  =  𝑤 }  =  ∅ ) | 
						
							| 20 | 1 19 | eqtrid | ⊢ ( 𝑊  =  ∅  →  𝑀  =  ∅ ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( 𝑊  =  ∅  →  ( ♯ ‘ 𝑀 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 22 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 23 | 21 22 | eqtrdi | ⊢ ( 𝑊  =  ∅  →  ( ♯ ‘ 𝑀 )  =  0 ) |