Metamath Proof Explorer


Theorem reusn

Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006) (Proof shortened by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion reusn ( ∃! 𝑥𝐴 𝜑 ↔ ∃ 𝑦 { 𝑥𝐴𝜑 } = { 𝑦 } )

Proof

Step Hyp Ref Expression
1 euabsn2 ( ∃! 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑦 { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = { 𝑦 } )
2 df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
3 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
4 3 eqeq1i ( { 𝑥𝐴𝜑 } = { 𝑦 } ↔ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = { 𝑦 } )
5 4 exbii ( ∃ 𝑦 { 𝑥𝐴𝜑 } = { 𝑦 } ↔ ∃ 𝑦 { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = { 𝑦 } )
6 1 2 5 3bitr4i ( ∃! 𝑥𝐴 𝜑 ↔ ∃ 𝑦 { 𝑥𝐴𝜑 } = { 𝑦 } )