Metamath Proof Explorer


Theorem reusn

Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006) (Proof shortened by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion reusn
|- ( E! x e. A ph <-> E. y { x e. A | ph } = { y } )

Proof

Step Hyp Ref Expression
1 euabsn2
 |-  ( E! x ( x e. A /\ ph ) <-> E. y { x | ( x e. A /\ ph ) } = { y } )
2 df-reu
 |-  ( E! x e. A ph <-> E! x ( x e. A /\ ph ) )
3 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
4 3 eqeq1i
 |-  ( { x e. A | ph } = { y } <-> { x | ( x e. A /\ ph ) } = { y } )
5 4 exbii
 |-  ( E. y { x e. A | ph } = { y } <-> E. y { x | ( x e. A /\ ph ) } = { y } )
6 1 2 5 3bitr4i
 |-  ( E! x e. A ph <-> E. y { x e. A | ph } = { y } )