| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwshash.0 |  |-  ( ph -> ( W e. Word V /\ ( # ` W ) e. Prime ) ) | 
						
							| 2 |  | orc |  |-  ( n = j -> ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) | 
						
							| 3 | 2 | a1d |  |-  ( n = j -> ( ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) -> ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) ) | 
						
							| 4 |  | simprl |  |-  ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) | 
						
							| 5 |  | simprrl |  |-  ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> n e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 6 |  | simprrr |  |-  ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> j e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 7 |  | necom |  |-  ( n =/= j <-> j =/= n ) | 
						
							| 8 | 7 | biimpi |  |-  ( n =/= j -> j =/= n ) | 
						
							| 9 | 8 | adantr |  |-  ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> j =/= n ) | 
						
							| 10 | 1 | cshwshashlem3 |  |-  ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) /\ j =/= n ) -> ( W cyclShift n ) =/= ( W cyclShift j ) ) ) | 
						
							| 11 | 10 | imp |  |-  ( ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) /\ j =/= n ) ) -> ( W cyclShift n ) =/= ( W cyclShift j ) ) | 
						
							| 12 | 4 5 6 9 11 | syl13anc |  |-  ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( W cyclShift n ) =/= ( W cyclShift j ) ) | 
						
							| 13 |  | disjsn2 |  |-  ( ( W cyclShift n ) =/= ( W cyclShift j ) -> ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) | 
						
							| 15 | 14 | olcd |  |-  ( ( n =/= j /\ ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) ) -> ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) | 
						
							| 16 | 15 | ex |  |-  ( n =/= j -> ( ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) -> ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) ) | 
						
							| 17 | 3 16 | pm2.61ine |  |-  ( ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( n e. ( 0 ..^ ( # ` W ) ) /\ j e. ( 0 ..^ ( # ` W ) ) ) ) -> ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) | 
						
							| 18 | 17 | ralrimivva |  |-  ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> A. n e. ( 0 ..^ ( # ` W ) ) A. j e. ( 0 ..^ ( # ` W ) ) ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) | 
						
							| 19 |  | oveq2 |  |-  ( n = j -> ( W cyclShift n ) = ( W cyclShift j ) ) | 
						
							| 20 | 19 | sneqd |  |-  ( n = j -> { ( W cyclShift n ) } = { ( W cyclShift j ) } ) | 
						
							| 21 | 20 | disjor |  |-  ( Disj_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } <-> A. n e. ( 0 ..^ ( # ` W ) ) A. j e. ( 0 ..^ ( # ` W ) ) ( n = j \/ ( { ( W cyclShift n ) } i^i { ( W cyclShift j ) } ) = (/) ) ) | 
						
							| 22 | 18 21 | sylibr |  |-  ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> Disj_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } ) |