| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwshash.0 |  |-  ( ph -> ( W e. Word V /\ ( # ` W ) e. Prime ) ) | 
						
							| 2 |  | elfzoelz |  |-  ( K e. ( 0 ..^ ( # ` W ) ) -> K e. ZZ ) | 
						
							| 3 | 2 | zred |  |-  ( K e. ( 0 ..^ ( # ` W ) ) -> K e. RR ) | 
						
							| 4 |  | elfzoelz |  |-  ( L e. ( 0 ..^ ( # ` W ) ) -> L e. ZZ ) | 
						
							| 5 | 4 | zred |  |-  ( L e. ( 0 ..^ ( # ` W ) ) -> L e. RR ) | 
						
							| 6 |  | lttri2 |  |-  ( ( K e. RR /\ L e. RR ) -> ( K =/= L <-> ( K < L \/ L < K ) ) ) | 
						
							| 7 | 3 5 6 | syl2anr |  |-  ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( K =/= L <-> ( K < L \/ L < K ) ) ) | 
						
							| 8 | 1 | cshwshashlem2 |  |-  ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) | 
						
							| 9 | 8 | com12 |  |-  ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) | 
						
							| 10 | 9 | 3expia |  |-  ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( K < L -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) | 
						
							| 11 | 1 | cshwshashlem2 |  |-  ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( K e. ( 0 ..^ ( # ` W ) ) /\ L e. ( 0 ..^ ( # ` W ) ) /\ L < K ) -> ( W cyclShift K ) =/= ( W cyclShift L ) ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( K e. ( 0 ..^ ( # ` W ) ) /\ L e. ( 0 ..^ ( # ` W ) ) /\ L < K ) ) -> ( W cyclShift K ) =/= ( W cyclShift L ) ) | 
						
							| 13 | 12 | necomd |  |-  ( ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) /\ ( K e. ( 0 ..^ ( # ` W ) ) /\ L e. ( 0 ..^ ( # ` W ) ) /\ L < K ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) | 
						
							| 14 | 13 | expcom |  |-  ( ( K e. ( 0 ..^ ( # ` W ) ) /\ L e. ( 0 ..^ ( # ` W ) ) /\ L < K ) -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) | 
						
							| 15 | 14 | 3expia |  |-  ( ( K e. ( 0 ..^ ( # ` W ) ) /\ L e. ( 0 ..^ ( # ` W ) ) ) -> ( L < K -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) | 
						
							| 16 | 15 | ancoms |  |-  ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( L < K -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) | 
						
							| 17 | 10 16 | jaod |  |-  ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( ( K < L \/ L < K ) -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) | 
						
							| 18 | 7 17 | sylbid |  |-  ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( K =/= L -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) | 
						
							| 19 | 18 | 3impia |  |-  ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K =/= L ) -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) | 
						
							| 20 | 19 | com12 |  |-  ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K =/= L ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) |