| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cshwshash.0 |
|- ( ph -> ( W e. Word V /\ ( # ` W ) e. Prime ) ) |
| 2 |
|
oveq1 |
|- ( ( W cyclShift L ) = ( W cyclShift K ) -> ( ( W cyclShift L ) cyclShift ( ( # ` W ) - L ) ) = ( ( W cyclShift K ) cyclShift ( ( # ` W ) - L ) ) ) |
| 3 |
2
|
eqcomd |
|- ( ( W cyclShift L ) = ( W cyclShift K ) -> ( ( W cyclShift K ) cyclShift ( ( # ` W ) - L ) ) = ( ( W cyclShift L ) cyclShift ( ( # ` W ) - L ) ) ) |
| 4 |
3
|
ad2antrr |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( ( W cyclShift K ) cyclShift ( ( # ` W ) - L ) ) = ( ( W cyclShift L ) cyclShift ( ( # ` W ) - L ) ) ) |
| 5 |
1
|
simpld |
|- ( ph -> W e. Word V ) |
| 6 |
5
|
adantr |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> W e. Word V ) |
| 7 |
6
|
adantl |
|- ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) -> W e. Word V ) |
| 8 |
7
|
adantr |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> W e. Word V ) |
| 9 |
|
elfzofz |
|- ( K e. ( 0 ..^ ( # ` W ) ) -> K e. ( 0 ... ( # ` W ) ) ) |
| 10 |
9
|
3ad2ant2 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> K e. ( 0 ... ( # ` W ) ) ) |
| 11 |
10
|
adantl |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> K e. ( 0 ... ( # ` W ) ) ) |
| 12 |
|
elfzofz |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> L e. ( 0 ... ( # ` W ) ) ) |
| 13 |
|
fznn0sub2 |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) ) |
| 14 |
12 13
|
syl |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) ) |
| 15 |
14
|
3ad2ant1 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) ) |
| 16 |
15
|
adantl |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) ) |
| 17 |
|
elfzo0 |
|- ( L e. ( 0 ..^ ( # ` W ) ) <-> ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) |
| 18 |
|
zre |
|- ( K e. ZZ -> K e. RR ) |
| 19 |
18
|
adantr |
|- ( ( K e. ZZ /\ ( L e. NN0 /\ ( # ` W ) e. NN ) ) -> K e. RR ) |
| 20 |
|
nnre |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. RR ) |
| 21 |
|
nn0re |
|- ( L e. NN0 -> L e. RR ) |
| 22 |
|
resubcl |
|- ( ( ( # ` W ) e. RR /\ L e. RR ) -> ( ( # ` W ) - L ) e. RR ) |
| 23 |
20 21 22
|
syl2anr |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN ) -> ( ( # ` W ) - L ) e. RR ) |
| 24 |
23
|
adantl |
|- ( ( K e. ZZ /\ ( L e. NN0 /\ ( # ` W ) e. NN ) ) -> ( ( # ` W ) - L ) e. RR ) |
| 25 |
19 24
|
readdcld |
|- ( ( K e. ZZ /\ ( L e. NN0 /\ ( # ` W ) e. NN ) ) -> ( K + ( ( # ` W ) - L ) ) e. RR ) |
| 26 |
20
|
adantl |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN ) -> ( # ` W ) e. RR ) |
| 27 |
26
|
adantl |
|- ( ( K e. ZZ /\ ( L e. NN0 /\ ( # ` W ) e. NN ) ) -> ( # ` W ) e. RR ) |
| 28 |
25 27
|
jca |
|- ( ( K e. ZZ /\ ( L e. NN0 /\ ( # ` W ) e. NN ) ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) |
| 29 |
28
|
ex |
|- ( K e. ZZ -> ( ( L e. NN0 /\ ( # ` W ) e. NN ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) ) |
| 30 |
|
elfzoelz |
|- ( K e. ( 0 ..^ ( # ` W ) ) -> K e. ZZ ) |
| 31 |
29 30
|
syl11 |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN ) -> ( K e. ( 0 ..^ ( # ` W ) ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) ) |
| 32 |
31
|
3adant3 |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( K e. ( 0 ..^ ( # ` W ) ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) ) |
| 33 |
17 32
|
sylbi |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( K e. ( 0 ..^ ( # ` W ) ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) ) |
| 34 |
33
|
imp |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) |
| 35 |
34
|
3adant3 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) ) |
| 36 |
|
fzonmapblen |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( K + ( ( # ` W ) - L ) ) < ( # ` W ) ) |
| 37 |
|
ltle |
|- ( ( ( K + ( ( # ` W ) - L ) ) e. RR /\ ( # ` W ) e. RR ) -> ( ( K + ( ( # ` W ) - L ) ) < ( # ` W ) -> ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) ) |
| 38 |
35 36 37
|
sylc |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) |
| 39 |
38
|
adantl |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) |
| 40 |
|
simpl |
|- ( ( W e. Word V /\ ( K e. ( 0 ... ( # ` W ) ) /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) ) -> W e. Word V ) |
| 41 |
|
elfzelz |
|- ( K e. ( 0 ... ( # ` W ) ) -> K e. ZZ ) |
| 42 |
41
|
3ad2ant1 |
|- ( ( K e. ( 0 ... ( # ` W ) ) /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) -> K e. ZZ ) |
| 43 |
42
|
adantl |
|- ( ( W e. Word V /\ ( K e. ( 0 ... ( # ` W ) ) /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) ) -> K e. ZZ ) |
| 44 |
|
elfzelz |
|- ( ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) -> ( ( # ` W ) - L ) e. ZZ ) |
| 45 |
44
|
3ad2ant2 |
|- ( ( K e. ( 0 ... ( # ` W ) ) /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) -> ( ( # ` W ) - L ) e. ZZ ) |
| 46 |
45
|
adantl |
|- ( ( W e. Word V /\ ( K e. ( 0 ... ( # ` W ) ) /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) ) -> ( ( # ` W ) - L ) e. ZZ ) |
| 47 |
|
2cshw |
|- ( ( W e. Word V /\ K e. ZZ /\ ( ( # ` W ) - L ) e. ZZ ) -> ( ( W cyclShift K ) cyclShift ( ( # ` W ) - L ) ) = ( W cyclShift ( K + ( ( # ` W ) - L ) ) ) ) |
| 48 |
40 43 46 47
|
syl3anc |
|- ( ( W e. Word V /\ ( K e. ( 0 ... ( # ` W ) ) /\ ( ( # ` W ) - L ) e. ( 0 ... ( # ` W ) ) /\ ( K + ( ( # ` W ) - L ) ) <_ ( # ` W ) ) ) -> ( ( W cyclShift K ) cyclShift ( ( # ` W ) - L ) ) = ( W cyclShift ( K + ( ( # ` W ) - L ) ) ) ) |
| 49 |
8 11 16 39 48
|
syl13anc |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( ( W cyclShift K ) cyclShift ( ( # ` W ) - L ) ) = ( W cyclShift ( K + ( ( # ` W ) - L ) ) ) ) |
| 50 |
12
|
3ad2ant1 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> L e. ( 0 ... ( # ` W ) ) ) |
| 51 |
|
elfzelz |
|- ( L e. ( 0 ... ( # ` W ) ) -> L e. ZZ ) |
| 52 |
|
2cshwid |
|- ( ( W e. Word V /\ L e. ZZ ) -> ( ( W cyclShift L ) cyclShift ( ( # ` W ) - L ) ) = W ) |
| 53 |
51 52
|
sylan2 |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( W cyclShift L ) cyclShift ( ( # ` W ) - L ) ) = W ) |
| 54 |
7 50 53
|
syl2an |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( ( W cyclShift L ) cyclShift ( ( # ` W ) - L ) ) = W ) |
| 55 |
4 49 54
|
3eqtr3d |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( W cyclShift ( K + ( ( # ` W ) - L ) ) ) = W ) |
| 56 |
|
simplrl |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ph ) |
| 57 |
|
simplrr |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) |
| 58 |
|
3simpa |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( L e. NN0 /\ ( # ` W ) e. NN ) ) |
| 59 |
17 58
|
sylbi |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( L e. NN0 /\ ( # ` W ) e. NN ) ) |
| 60 |
|
nnz |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. ZZ ) |
| 61 |
|
nn0z |
|- ( L e. NN0 -> L e. ZZ ) |
| 62 |
|
zsubcl |
|- ( ( ( # ` W ) e. ZZ /\ L e. ZZ ) -> ( ( # ` W ) - L ) e. ZZ ) |
| 63 |
60 61 62
|
syl2anr |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN ) -> ( ( # ` W ) - L ) e. ZZ ) |
| 64 |
63
|
anim1ci |
|- ( ( ( L e. NN0 /\ ( # ` W ) e. NN ) /\ K e. ZZ ) -> ( K e. ZZ /\ ( ( # ` W ) - L ) e. ZZ ) ) |
| 65 |
|
zaddcl |
|- ( ( K e. ZZ /\ ( ( # ` W ) - L ) e. ZZ ) -> ( K + ( ( # ` W ) - L ) ) e. ZZ ) |
| 66 |
64 65
|
syl |
|- ( ( ( L e. NN0 /\ ( # ` W ) e. NN ) /\ K e. ZZ ) -> ( K + ( ( # ` W ) - L ) ) e. ZZ ) |
| 67 |
59 30 66
|
syl2an |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> ( K + ( ( # ` W ) - L ) ) e. ZZ ) |
| 68 |
67
|
3adant3 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( K + ( ( # ` W ) - L ) ) e. ZZ ) |
| 69 |
|
elfzo0 |
|- ( K e. ( 0 ..^ ( # ` W ) ) <-> ( K e. NN0 /\ ( # ` W ) e. NN /\ K < ( # ` W ) ) ) |
| 70 |
|
elnn0z |
|- ( K e. NN0 <-> ( K e. ZZ /\ 0 <_ K ) ) |
| 71 |
18
|
ad2antrr |
|- ( ( ( K e. ZZ /\ 0 <_ K ) /\ ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) -> K e. RR ) |
| 72 |
23
|
3adant3 |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( ( # ` W ) - L ) e. RR ) |
| 73 |
72
|
adantl |
|- ( ( ( K e. ZZ /\ 0 <_ K ) /\ ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) -> ( ( # ` W ) - L ) e. RR ) |
| 74 |
|
simplr |
|- ( ( ( K e. ZZ /\ 0 <_ K ) /\ ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) -> 0 <_ K ) |
| 75 |
|
posdif |
|- ( ( L e. RR /\ ( # ` W ) e. RR ) -> ( L < ( # ` W ) <-> 0 < ( ( # ` W ) - L ) ) ) |
| 76 |
21 20 75
|
syl2an |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN ) -> ( L < ( # ` W ) <-> 0 < ( ( # ` W ) - L ) ) ) |
| 77 |
76
|
biimp3a |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> 0 < ( ( # ` W ) - L ) ) |
| 78 |
77
|
adantl |
|- ( ( ( K e. ZZ /\ 0 <_ K ) /\ ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) -> 0 < ( ( # ` W ) - L ) ) |
| 79 |
71 73 74 78
|
addgegt0d |
|- ( ( ( K e. ZZ /\ 0 <_ K ) /\ ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) |
| 80 |
79
|
ex |
|- ( ( K e. ZZ /\ 0 <_ K ) -> ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
| 81 |
70 80
|
sylbi |
|- ( K e. NN0 -> ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
| 82 |
81
|
3ad2ant1 |
|- ( ( K e. NN0 /\ ( # ` W ) e. NN /\ K < ( # ` W ) ) -> ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
| 83 |
69 82
|
sylbi |
|- ( K e. ( 0 ..^ ( # ` W ) ) -> ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
| 84 |
83
|
com12 |
|- ( ( L e. NN0 /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( K e. ( 0 ..^ ( # ` W ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
| 85 |
17 84
|
sylbi |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( K e. ( 0 ..^ ( # ` W ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
| 86 |
85
|
imp |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) |
| 87 |
86
|
3adant3 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> 0 < ( K + ( ( # ` W ) - L ) ) ) |
| 88 |
|
elnnz |
|- ( ( K + ( ( # ` W ) - L ) ) e. NN <-> ( ( K + ( ( # ` W ) - L ) ) e. ZZ /\ 0 < ( K + ( ( # ` W ) - L ) ) ) ) |
| 89 |
68 87 88
|
sylanbrc |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( K + ( ( # ` W ) - L ) ) e. NN ) |
| 90 |
17
|
simp2bi |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( # ` W ) e. NN ) |
| 91 |
90
|
3ad2ant1 |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( # ` W ) e. NN ) |
| 92 |
|
elfzo1 |
|- ( ( K + ( ( # ` W ) - L ) ) e. ( 1 ..^ ( # ` W ) ) <-> ( ( K + ( ( # ` W ) - L ) ) e. NN /\ ( # ` W ) e. NN /\ ( K + ( ( # ` W ) - L ) ) < ( # ` W ) ) ) |
| 93 |
89 91 36 92
|
syl3anbrc |
|- ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( K + ( ( # ` W ) - L ) ) e. ( 1 ..^ ( # ` W ) ) ) |
| 94 |
93
|
adantl |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( K + ( ( # ` W ) - L ) ) e. ( 1 ..^ ( # ` W ) ) ) |
| 95 |
1
|
cshwshashlem1 |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ ( K + ( ( # ` W ) - L ) ) e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift ( K + ( ( # ` W ) - L ) ) ) =/= W ) |
| 96 |
56 57 94 95
|
syl3anc |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( W cyclShift ( K + ( ( # ` W ) - L ) ) ) =/= W ) |
| 97 |
55 96
|
pm2.21ddne |
|- ( ( ( ( W cyclShift L ) = ( W cyclShift K ) /\ ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) ) /\ ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) |
| 98 |
97
|
exp31 |
|- ( ( W cyclShift L ) = ( W cyclShift K ) -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) |
| 99 |
|
2a1 |
|- ( ( W cyclShift L ) =/= ( W cyclShift K ) -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) ) |
| 100 |
98 99
|
pm2.61ine |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) ) -> ( ( L e. ( 0 ..^ ( # ` W ) ) /\ K e. ( 0 ..^ ( # ` W ) ) /\ K < L ) -> ( W cyclShift L ) =/= ( W cyclShift K ) ) ) |