| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cshwshash.0 |
|- ( ph -> ( W e. Word V /\ ( # ` W ) e. Prime ) ) |
| 2 |
|
df-ne |
|- ( ( W ` i ) =/= ( W ` 0 ) <-> -. ( W ` i ) = ( W ` 0 ) ) |
| 3 |
2
|
rexbii |
|- ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) <-> E. i e. ( 0 ..^ ( # ` W ) ) -. ( W ` i ) = ( W ` 0 ) ) |
| 4 |
|
rexnal |
|- ( E. i e. ( 0 ..^ ( # ` W ) ) -. ( W ` i ) = ( W ` 0 ) <-> -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| 5 |
3 4
|
bitri |
|- ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) <-> -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| 6 |
|
simpll |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ph ) |
| 7 |
|
fzo0ss1 |
|- ( 1 ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) |
| 8 |
|
fzossfz |
|- ( 0 ..^ ( # ` W ) ) C_ ( 0 ... ( # ` W ) ) |
| 9 |
7 8
|
sstri |
|- ( 1 ..^ ( # ` W ) ) C_ ( 0 ... ( # ` W ) ) |
| 10 |
9
|
sseli |
|- ( L e. ( 1 ..^ ( # ` W ) ) -> L e. ( 0 ... ( # ` W ) ) ) |
| 11 |
10
|
ad2antlr |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> L e. ( 0 ... ( # ` W ) ) ) |
| 12 |
|
simpr |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( W cyclShift L ) = W ) |
| 13 |
|
simpll |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> W e. Word V ) |
| 14 |
|
simpr |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( # ` W ) e. Prime ) |
| 15 |
14
|
adantr |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> ( # ` W ) e. Prime ) |
| 16 |
|
elfzelz |
|- ( L e. ( 0 ... ( # ` W ) ) -> L e. ZZ ) |
| 17 |
16
|
adantl |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> L e. ZZ ) |
| 18 |
|
cshwsidrepswmod0 |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime /\ L e. ZZ ) -> ( ( W cyclShift L ) = W -> ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) |
| 19 |
13 15 17 18
|
syl3anc |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( W cyclShift L ) = W -> ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) |
| 20 |
19
|
ex |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( L e. ( 0 ... ( # ` W ) ) -> ( ( W cyclShift L ) = W -> ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) ) |
| 21 |
20
|
3imp |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
| 22 |
|
olc |
|- ( L = ( # ` W ) -> ( L = 0 \/ L = ( # ` W ) ) ) |
| 23 |
22
|
a1d |
|- ( L = ( # ` W ) -> ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L = 0 \/ L = ( # ` W ) ) ) ) |
| 24 |
|
fzofzim |
|- ( ( L =/= ( # ` W ) /\ L e. ( 0 ... ( # ` W ) ) ) -> L e. ( 0 ..^ ( # ` W ) ) ) |
| 25 |
|
zmodidfzoimp |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( L mod ( # ` W ) ) = L ) |
| 26 |
|
eqtr2 |
|- ( ( ( L mod ( # ` W ) ) = L /\ ( L mod ( # ` W ) ) = 0 ) -> L = 0 ) |
| 27 |
26
|
a1d |
|- ( ( ( L mod ( # ` W ) ) = L /\ ( L mod ( # ` W ) ) = 0 ) -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) |
| 28 |
27
|
ex |
|- ( ( L mod ( # ` W ) ) = L -> ( ( L mod ( # ` W ) ) = 0 -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) ) |
| 29 |
25 28
|
syl |
|- ( L e. ( 0 ..^ ( # ` W ) ) -> ( ( L mod ( # ` W ) ) = 0 -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) ) |
| 30 |
24 29
|
syl |
|- ( ( L =/= ( # ` W ) /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( L mod ( # ` W ) ) = 0 -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) ) |
| 31 |
30
|
expcom |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( L =/= ( # ` W ) -> ( ( L mod ( # ` W ) ) = 0 -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> L = 0 ) ) ) ) |
| 32 |
31
|
com24 |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( L mod ( # ` W ) ) = 0 -> ( L =/= ( # ` W ) -> L = 0 ) ) ) ) |
| 33 |
32
|
impcom |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) ) -> ( ( L mod ( # ` W ) ) = 0 -> ( L =/= ( # ` W ) -> L = 0 ) ) ) |
| 34 |
33
|
3adant3 |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( ( L mod ( # ` W ) ) = 0 -> ( L =/= ( # ` W ) -> L = 0 ) ) ) |
| 35 |
34
|
impcom |
|- ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L =/= ( # ` W ) -> L = 0 ) ) |
| 36 |
35
|
impcom |
|- ( ( L =/= ( # ` W ) /\ ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) ) -> L = 0 ) |
| 37 |
36
|
orcd |
|- ( ( L =/= ( # ` W ) /\ ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) ) -> ( L = 0 \/ L = ( # ` W ) ) ) |
| 38 |
37
|
ex |
|- ( L =/= ( # ` W ) -> ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L = 0 \/ L = ( # ` W ) ) ) ) |
| 39 |
23 38
|
pm2.61ine |
|- ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L = 0 \/ L = ( # ` W ) ) ) |
| 40 |
39
|
orcd |
|- ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( ( L = 0 \/ L = ( # ` W ) ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
| 41 |
|
df-3or |
|- ( ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) <-> ( ( L = 0 \/ L = ( # ` W ) ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
| 42 |
40 41
|
sylibr |
|- ( ( ( L mod ( # ` W ) ) = 0 /\ ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
| 43 |
42
|
ex |
|- ( ( L mod ( # ` W ) ) = 0 -> ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) |
| 44 |
|
3mix3 |
|- ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
| 45 |
44
|
a1d |
|- ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) -> ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) |
| 46 |
43 45
|
jaoi |
|- ( ( ( L mod ( # ` W ) ) = 0 \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) ) |
| 47 |
21 46
|
mpcom |
|- ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
| 48 |
1 47
|
syl3an1 |
|- ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |
| 49 |
|
3mix1 |
|- ( L = 0 -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 50 |
49
|
a1d |
|- ( L = 0 -> ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
| 51 |
|
3mix2 |
|- ( L = ( # ` W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 52 |
51
|
a1d |
|- ( L = ( # ` W ) -> ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
| 53 |
|
repswsymballbi |
|- ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 54 |
53
|
adantr |
|- ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 55 |
1 54
|
syl |
|- ( ph -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 56 |
55
|
3ad2ant1 |
|- ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 57 |
56
|
biimpa |
|- ( ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| 58 |
57
|
3mix3d |
|- ( ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) /\ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 59 |
58
|
expcom |
|- ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) -> ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
| 60 |
50 52 59
|
3jaoi |
|- ( ( L = 0 \/ L = ( # ` W ) \/ W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) -> ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
| 61 |
48 60
|
mpcom |
|- ( ( ph /\ L e. ( 0 ... ( # ` W ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 62 |
6 11 12 61
|
syl3anc |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 63 |
|
elfzo1 |
|- ( L e. ( 1 ..^ ( # ` W ) ) <-> ( L e. NN /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) ) |
| 64 |
|
nnne0 |
|- ( L e. NN -> L =/= 0 ) |
| 65 |
|
df-ne |
|- ( L =/= 0 <-> -. L = 0 ) |
| 66 |
|
pm2.21 |
|- ( -. L = 0 -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 67 |
65 66
|
sylbi |
|- ( L =/= 0 -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 68 |
64 67
|
syl |
|- ( L e. NN -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 69 |
68
|
3ad2ant1 |
|- ( ( L e. NN /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 70 |
63 69
|
sylbi |
|- ( L e. ( 1 ..^ ( # ` W ) ) -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 71 |
70
|
ad2antlr |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( L = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 72 |
71
|
com12 |
|- ( L = 0 -> ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 73 |
|
nnre |
|- ( L e. NN -> L e. RR ) |
| 74 |
|
ltne |
|- ( ( L e. RR /\ L < ( # ` W ) ) -> ( # ` W ) =/= L ) |
| 75 |
73 74
|
sylan |
|- ( ( L e. NN /\ L < ( # ` W ) ) -> ( # ` W ) =/= L ) |
| 76 |
|
df-ne |
|- ( ( # ` W ) =/= L <-> -. ( # ` W ) = L ) |
| 77 |
|
eqcom |
|- ( L = ( # ` W ) <-> ( # ` W ) = L ) |
| 78 |
|
pm2.21 |
|- ( -. ( # ` W ) = L -> ( ( # ` W ) = L -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 79 |
77 78
|
biimtrid |
|- ( -. ( # ` W ) = L -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 80 |
76 79
|
sylbi |
|- ( ( # ` W ) =/= L -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 81 |
75 80
|
syl |
|- ( ( L e. NN /\ L < ( # ` W ) ) -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 82 |
81
|
3adant2 |
|- ( ( L e. NN /\ ( # ` W ) e. NN /\ L < ( # ` W ) ) -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 83 |
63 82
|
sylbi |
|- ( L e. ( 1 ..^ ( # ` W ) ) -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 84 |
83
|
ad2antlr |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( L = ( # ` W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 85 |
84
|
com12 |
|- ( L = ( # ` W ) -> ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 86 |
|
ax-1 |
|- ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 87 |
72 85 86
|
3jaoi |
|- ( ( L = 0 \/ L = ( # ` W ) \/ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) -> ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 88 |
62 87
|
mpcom |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| 89 |
88
|
pm2.24d |
|- ( ( ( ph /\ L e. ( 1 ..^ ( # ` W ) ) ) /\ ( W cyclShift L ) = W ) -> ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( W cyclShift L ) =/= W ) ) |
| 90 |
89
|
exp31 |
|- ( ph -> ( L e. ( 1 ..^ ( # ` W ) ) -> ( ( W cyclShift L ) = W -> ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( W cyclShift L ) =/= W ) ) ) ) |
| 91 |
90
|
com34 |
|- ( ph -> ( L e. ( 1 ..^ ( # ` W ) ) -> ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( ( W cyclShift L ) = W -> ( W cyclShift L ) =/= W ) ) ) ) |
| 92 |
91
|
com23 |
|- ( ph -> ( -. A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) -> ( L e. ( 1 ..^ ( # ` W ) ) -> ( ( W cyclShift L ) = W -> ( W cyclShift L ) =/= W ) ) ) ) |
| 93 |
5 92
|
biimtrid |
|- ( ph -> ( E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) -> ( L e. ( 1 ..^ ( # ` W ) ) -> ( ( W cyclShift L ) = W -> ( W cyclShift L ) =/= W ) ) ) ) |
| 94 |
93
|
3imp |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ L e. ( 1 ..^ ( # ` W ) ) ) -> ( ( W cyclShift L ) = W -> ( W cyclShift L ) =/= W ) ) |
| 95 |
94
|
com12 |
|- ( ( W cyclShift L ) = W -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ L e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift L ) =/= W ) ) |
| 96 |
|
ax-1 |
|- ( ( W cyclShift L ) =/= W -> ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ L e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift L ) =/= W ) ) |
| 97 |
95 96
|
pm2.61ine |
|- ( ( ph /\ E. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) =/= ( W ` 0 ) /\ L e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift L ) =/= W ) |