| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cshwshash.0 |
⊢ ( 𝜑 → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ) |
| 2 |
|
df-ne |
⊢ ( ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ↔ ¬ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 3 |
2
|
rexbii |
⊢ ( ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ¬ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 4 |
|
rexnal |
⊢ ( ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ¬ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ↔ ¬ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 5 |
3 4
|
bitri |
⊢ ( ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ↔ ¬ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 6 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → 𝜑 ) |
| 7 |
|
fzo0ss1 |
⊢ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) |
| 8 |
|
fzossfz |
⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝑊 ) ) |
| 9 |
7 8
|
sstri |
⊢ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝑊 ) ) |
| 10 |
9
|
sseli |
⊢ ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 11 |
10
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) |
| 13 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) |
| 14 |
|
simpr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → ( ♯ ‘ 𝑊 ) ∈ ℙ ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℙ ) |
| 16 |
|
elfzelz |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℤ ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → 𝐿 ∈ ℤ ) |
| 18 |
|
cshwsidrepswmod0 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ∧ 𝐿 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 19 |
13 15 17 18
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 20 |
19
|
ex |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 21 |
20
|
3imp |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
| 22 |
|
olc |
⊢ ( 𝐿 = ( ♯ ‘ 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ) |
| 23 |
22
|
a1d |
⊢ ( 𝐿 = ( ♯ ‘ 𝑊 ) → ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ) ) |
| 24 |
|
fzofzim |
⊢ ( ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → 𝐿 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 25 |
|
zmodidfzoimp |
⊢ ( 𝐿 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 𝐿 ) |
| 26 |
|
eqtr2 |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 𝐿 ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ) → 𝐿 = 0 ) |
| 27 |
26
|
a1d |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 𝐿 ∧ ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → 𝐿 = 0 ) ) |
| 28 |
27
|
ex |
⊢ ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 𝐿 → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → 𝐿 = 0 ) ) ) |
| 29 |
25 28
|
syl |
⊢ ( 𝐿 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → 𝐿 = 0 ) ) ) |
| 30 |
24 29
|
syl |
⊢ ( ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → 𝐿 = 0 ) ) ) |
| 31 |
30
|
expcom |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → 𝐿 = 0 ) ) ) ) |
| 32 |
31
|
com24 |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) → 𝐿 = 0 ) ) ) ) |
| 33 |
32
|
impcom |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) → 𝐿 = 0 ) ) ) |
| 34 |
33
|
3adant3 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) → 𝐿 = 0 ) ) ) |
| 35 |
34
|
impcom |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) → 𝐿 = 0 ) ) |
| 36 |
35
|
impcom |
⊢ ( ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) ∧ ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ) → 𝐿 = 0 ) |
| 37 |
36
|
orcd |
⊢ ( ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) ∧ ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ) |
| 38 |
37
|
ex |
⊢ ( 𝐿 ≠ ( ♯ ‘ 𝑊 ) → ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ) ) |
| 39 |
23 38
|
pm2.61ine |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ) |
| 40 |
39
|
orcd |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
| 41 |
|
df-3or |
⊢ ( ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ↔ ( ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
| 42 |
40 41
|
sylibr |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
| 43 |
42
|
ex |
⊢ ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 → ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 44 |
|
3mix3 |
⊢ ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
| 45 |
44
|
a1d |
⊢ ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 46 |
43 45
|
jaoi |
⊢ ( ( ( 𝐿 mod ( ♯ ‘ 𝑊 ) ) = 0 ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 47 |
21 46
|
mpcom |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
| 48 |
1 47
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) ) |
| 49 |
|
3mix1 |
⊢ ( 𝐿 = 0 → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 50 |
49
|
a1d |
⊢ ( 𝐿 = 0 → ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
| 51 |
|
3mix2 |
⊢ ( 𝐿 = ( ♯ ‘ 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 52 |
51
|
a1d |
⊢ ( 𝐿 = ( ♯ ‘ 𝑊 ) → ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
| 53 |
|
repswsymballbi |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℙ ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 55 |
1 54
|
syl |
⊢ ( 𝜑 → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 56 |
55
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 57 |
56
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ∧ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 58 |
57
|
3mix3d |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) ∧ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 59 |
58
|
expcom |
⊢ ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) → ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
| 60 |
50 52 59
|
3jaoi |
⊢ ( ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
| 61 |
48 60
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 62 |
6 11 12 61
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 63 |
|
elfzo1 |
⊢ ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐿 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐿 < ( ♯ ‘ 𝑊 ) ) ) |
| 64 |
|
nnne0 |
⊢ ( 𝐿 ∈ ℕ → 𝐿 ≠ 0 ) |
| 65 |
|
df-ne |
⊢ ( 𝐿 ≠ 0 ↔ ¬ 𝐿 = 0 ) |
| 66 |
|
pm2.21 |
⊢ ( ¬ 𝐿 = 0 → ( 𝐿 = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 67 |
65 66
|
sylbi |
⊢ ( 𝐿 ≠ 0 → ( 𝐿 = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 68 |
64 67
|
syl |
⊢ ( 𝐿 ∈ ℕ → ( 𝐿 = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 69 |
68
|
3ad2ant1 |
⊢ ( ( 𝐿 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐿 < ( ♯ ‘ 𝑊 ) ) → ( 𝐿 = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 70 |
63 69
|
sylbi |
⊢ ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐿 = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 71 |
70
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 72 |
71
|
com12 |
⊢ ( 𝐿 = 0 → ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 73 |
|
nnre |
⊢ ( 𝐿 ∈ ℕ → 𝐿 ∈ ℝ ) |
| 74 |
|
ltne |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝐿 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ≠ 𝐿 ) |
| 75 |
73 74
|
sylan |
⊢ ( ( 𝐿 ∈ ℕ ∧ 𝐿 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ≠ 𝐿 ) |
| 76 |
|
df-ne |
⊢ ( ( ♯ ‘ 𝑊 ) ≠ 𝐿 ↔ ¬ ( ♯ ‘ 𝑊 ) = 𝐿 ) |
| 77 |
|
eqcom |
⊢ ( 𝐿 = ( ♯ ‘ 𝑊 ) ↔ ( ♯ ‘ 𝑊 ) = 𝐿 ) |
| 78 |
|
pm2.21 |
⊢ ( ¬ ( ♯ ‘ 𝑊 ) = 𝐿 → ( ( ♯ ‘ 𝑊 ) = 𝐿 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 79 |
77 78
|
biimtrid |
⊢ ( ¬ ( ♯ ‘ 𝑊 ) = 𝐿 → ( 𝐿 = ( ♯ ‘ 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 80 |
76 79
|
sylbi |
⊢ ( ( ♯ ‘ 𝑊 ) ≠ 𝐿 → ( 𝐿 = ( ♯ ‘ 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 81 |
75 80
|
syl |
⊢ ( ( 𝐿 ∈ ℕ ∧ 𝐿 < ( ♯ ‘ 𝑊 ) ) → ( 𝐿 = ( ♯ ‘ 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 82 |
81
|
3adant2 |
⊢ ( ( 𝐿 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐿 < ( ♯ ‘ 𝑊 ) ) → ( 𝐿 = ( ♯ ‘ 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 83 |
63 82
|
sylbi |
⊢ ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐿 = ( ♯ ‘ 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 84 |
83
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( 𝐿 = ( ♯ ‘ 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 85 |
84
|
com12 |
⊢ ( 𝐿 = ( ♯ ‘ 𝑊 ) → ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 86 |
|
ax-1 |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) → ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 87 |
72 85 86
|
3jaoi |
⊢ ( ( 𝐿 = 0 ∨ 𝐿 = ( ♯ ‘ 𝑊 ) ∨ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) → ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 88 |
62 87
|
mpcom |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 89 |
88
|
pm2.24d |
⊢ ( ( ( 𝜑 ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑊 cyclShift 𝐿 ) = 𝑊 ) → ( ¬ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) |
| 90 |
89
|
exp31 |
⊢ ( 𝜑 → ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ¬ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) ) ) |
| 91 |
90
|
com34 |
⊢ ( 𝜑 → ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( ¬ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) ) ) |
| 92 |
91
|
com23 |
⊢ ( 𝜑 → ( ¬ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) → ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) ) ) |
| 93 |
5 92
|
biimtrid |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) → ( 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) ) ) |
| 94 |
93
|
3imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) |
| 95 |
94
|
com12 |
⊢ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) |
| 96 |
|
ax-1 |
⊢ ( ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 → ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) ) |
| 97 |
95 96
|
pm2.61ine |
⊢ ( ( 𝜑 ∧ ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) ≠ ( 𝑊 ‘ 0 ) ∧ 𝐿 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝐿 ) ≠ 𝑊 ) |