| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz2nn0 |
⊢ ( 𝐾 ∈ ( 0 ... 𝑀 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) ) |
| 2 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) ∧ 𝐾 ≠ 𝑀 ) → 𝐾 ∈ ℕ0 ) |
| 3 |
|
necom |
⊢ ( 𝐾 ≠ 𝑀 ↔ 𝑀 ≠ 𝐾 ) |
| 4 |
|
nn0re |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) |
| 5 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
| 6 |
|
ltlen |
⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝐾 < 𝑀 ↔ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾 ) ) ) |
| 7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 < 𝑀 ↔ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾 ) ) ) |
| 8 |
7
|
bicomd |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾 ) ↔ 𝐾 < 𝑀 ) ) |
| 9 |
|
elnn0z |
⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) ) |
| 10 |
|
0red |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → 0 ∈ ℝ ) |
| 11 |
|
zre |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → 𝐾 ∈ ℝ ) |
| 13 |
5
|
adantl |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 14 |
|
lelttr |
⊢ ( ( 0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 0 ≤ 𝐾 ∧ 𝐾 < 𝑀 ) → 0 < 𝑀 ) ) |
| 15 |
10 12 13 14
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( ( 0 ≤ 𝐾 ∧ 𝐾 < 𝑀 ) → 0 < 𝑀 ) ) |
| 16 |
|
nn0z |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) |
| 17 |
|
elnnz |
⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 ∈ ℤ ∧ 0 < 𝑀 ) ) |
| 18 |
17
|
simplbi2 |
⊢ ( 𝑀 ∈ ℤ → ( 0 < 𝑀 → 𝑀 ∈ ℕ ) ) |
| 19 |
16 18
|
syl |
⊢ ( 𝑀 ∈ ℕ0 → ( 0 < 𝑀 → 𝑀 ∈ ℕ ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 0 < 𝑀 → 𝑀 ∈ ℕ ) ) |
| 21 |
15 20
|
syld |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( ( 0 ≤ 𝐾 ∧ 𝐾 < 𝑀 ) → 𝑀 ∈ ℕ ) ) |
| 22 |
21
|
expd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 0 ≤ 𝐾 → ( 𝐾 < 𝑀 → 𝑀 ∈ ℕ ) ) ) |
| 23 |
22
|
impancom |
⊢ ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) → ( 𝑀 ∈ ℕ0 → ( 𝐾 < 𝑀 → 𝑀 ∈ ℕ ) ) ) |
| 24 |
9 23
|
sylbi |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( 𝐾 < 𝑀 → 𝑀 ∈ ℕ ) ) ) |
| 25 |
24
|
imp |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 < 𝑀 → 𝑀 ∈ ℕ ) ) |
| 26 |
8 25
|
sylbid |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾 ) → 𝑀 ∈ ℕ ) ) |
| 27 |
26
|
expd |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 ≤ 𝑀 → ( 𝑀 ≠ 𝐾 → 𝑀 ∈ ℕ ) ) ) |
| 28 |
3 27
|
syl7bi |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 ≤ 𝑀 → ( 𝐾 ≠ 𝑀 → 𝑀 ∈ ℕ ) ) ) |
| 29 |
28
|
3impia |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) → ( 𝐾 ≠ 𝑀 → 𝑀 ∈ ℕ ) ) |
| 30 |
29
|
imp |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) ∧ 𝐾 ≠ 𝑀 ) → 𝑀 ∈ ℕ ) |
| 31 |
8
|
biimpd |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾 ) → 𝐾 < 𝑀 ) ) |
| 32 |
31
|
exp4b |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( 𝐾 ≤ 𝑀 → ( 𝑀 ≠ 𝐾 → 𝐾 < 𝑀 ) ) ) ) |
| 33 |
32
|
3imp |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) → ( 𝑀 ≠ 𝐾 → 𝐾 < 𝑀 ) ) |
| 34 |
3 33
|
biimtrid |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) → ( 𝐾 ≠ 𝑀 → 𝐾 < 𝑀 ) ) |
| 35 |
34
|
imp |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) ∧ 𝐾 ≠ 𝑀 ) → 𝐾 < 𝑀 ) |
| 36 |
2 30 35
|
3jca |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) ∧ 𝐾 ≠ 𝑀 ) → ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀 ) ) |
| 37 |
36
|
ex |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝐾 ≤ 𝑀 ) → ( 𝐾 ≠ 𝑀 → ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀 ) ) ) |
| 38 |
1 37
|
sylbi |
⊢ ( 𝐾 ∈ ( 0 ... 𝑀 ) → ( 𝐾 ≠ 𝑀 → ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀 ) ) ) |
| 39 |
38
|
impcom |
⊢ ( ( 𝐾 ≠ 𝑀 ∧ 𝐾 ∈ ( 0 ... 𝑀 ) ) → ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀 ) ) |
| 40 |
|
elfzo0 |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀 ) ) |
| 41 |
39 40
|
sylibr |
⊢ ( ( 𝐾 ≠ 𝑀 ∧ 𝐾 ∈ ( 0 ... 𝑀 ) ) → 𝐾 ∈ ( 0 ..^ 𝑀 ) ) |