| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzo0 |  |-  ( A e. ( 0 ..^ N ) <-> ( A e. NN0 /\ N e. NN /\ A < N ) ) | 
						
							| 2 |  | nn0re |  |-  ( A e. NN0 -> A e. RR ) | 
						
							| 3 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 4 | 2 3 | anim12i |  |-  ( ( A e. NN0 /\ N e. NN ) -> ( A e. RR /\ N e. RR ) ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( A e. NN0 /\ N e. NN /\ A < N ) -> ( A e. RR /\ N e. RR ) ) | 
						
							| 6 | 1 5 | sylbi |  |-  ( A e. ( 0 ..^ N ) -> ( A e. RR /\ N e. RR ) ) | 
						
							| 7 |  | elfzoelz |  |-  ( B e. ( 0 ..^ N ) -> B e. ZZ ) | 
						
							| 8 | 7 | zred |  |-  ( B e. ( 0 ..^ N ) -> B e. RR ) | 
						
							| 9 |  | simpr |  |-  ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> B e. RR ) | 
						
							| 10 |  | simpll |  |-  ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> A e. RR ) | 
						
							| 11 |  | resubcl |  |-  ( ( N e. RR /\ A e. RR ) -> ( N - A ) e. RR ) | 
						
							| 12 | 11 | ancoms |  |-  ( ( A e. RR /\ N e. RR ) -> ( N - A ) e. RR ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> ( N - A ) e. RR ) | 
						
							| 14 | 9 10 13 | ltadd1d |  |-  ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> ( B < A <-> ( B + ( N - A ) ) < ( A + ( N - A ) ) ) ) | 
						
							| 15 | 14 | biimpa |  |-  ( ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) /\ B < A ) -> ( B + ( N - A ) ) < ( A + ( N - A ) ) ) | 
						
							| 16 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 17 |  | recn |  |-  ( N e. RR -> N e. CC ) | 
						
							| 18 | 16 17 | anim12i |  |-  ( ( A e. RR /\ N e. RR ) -> ( A e. CC /\ N e. CC ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> ( A e. CC /\ N e. CC ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) /\ B < A ) -> ( A e. CC /\ N e. CC ) ) | 
						
							| 21 |  | pncan3 |  |-  ( ( A e. CC /\ N e. CC ) -> ( A + ( N - A ) ) = N ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) /\ B < A ) -> ( A + ( N - A ) ) = N ) | 
						
							| 23 | 15 22 | breqtrd |  |-  ( ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) /\ B < A ) -> ( B + ( N - A ) ) < N ) | 
						
							| 24 | 23 | ex |  |-  ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> ( B < A -> ( B + ( N - A ) ) < N ) ) | 
						
							| 25 | 6 8 24 | syl2an |  |-  ( ( A e. ( 0 ..^ N ) /\ B e. ( 0 ..^ N ) ) -> ( B < A -> ( B + ( N - A ) ) < N ) ) | 
						
							| 26 | 25 | 3impia |  |-  ( ( A e. ( 0 ..^ N ) /\ B e. ( 0 ..^ N ) /\ B < A ) -> ( B + ( N - A ) ) < N ) |