Metamath Proof Explorer


Theorem fzonmapblen

Description: The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less than the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018)

Ref Expression
Assertion fzonmapblen A0..^NB0..^NB<AB+N-A<N

Proof

Step Hyp Ref Expression
1 elfzo0 A0..^NA0NA<N
2 nn0re A0A
3 nnre NN
4 2 3 anim12i A0NAN
5 4 3adant3 A0NA<NAN
6 1 5 sylbi A0..^NAN
7 elfzoelz B0..^NB
8 7 zred B0..^NB
9 simpr ANBB
10 simpll ANBA
11 resubcl NANA
12 11 ancoms ANNA
13 12 adantr ANBNA
14 9 10 13 ltadd1d ANBB<AB+N-A<A+N-A
15 14 biimpa ANBB<AB+N-A<A+N-A
16 recn AA
17 recn NN
18 16 17 anim12i ANAN
19 18 adantr ANBAN
20 19 adantr ANBB<AAN
21 pncan3 ANA+N-A=N
22 20 21 syl ANBB<AA+N-A=N
23 15 22 breqtrd ANBB<AB+N-A<N
24 23 ex ANBB<AB+N-A<N
25 6 8 24 syl2an A0..^NB0..^NB<AB+N-A<N
26 25 3impia A0..^NB0..^NB<AB+N-A<N