| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 2 | 1 | nn0zd |  |-  ( W e. Word V -> ( # ` W ) e. ZZ ) | 
						
							| 3 |  | zsubcl |  |-  ( ( ( # ` W ) e. ZZ /\ N e. ZZ ) -> ( ( # ` W ) - N ) e. ZZ ) | 
						
							| 4 | 2 3 | sylan |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( ( # ` W ) - N ) e. ZZ ) | 
						
							| 5 |  | 2cshw |  |-  ( ( W e. Word V /\ N e. ZZ /\ ( ( # ` W ) - N ) e. ZZ ) -> ( ( W cyclShift N ) cyclShift ( ( # ` W ) - N ) ) = ( W cyclShift ( N + ( ( # ` W ) - N ) ) ) ) | 
						
							| 6 | 4 5 | mpd3an3 |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( ( W cyclShift N ) cyclShift ( ( # ` W ) - N ) ) = ( W cyclShift ( N + ( ( # ` W ) - N ) ) ) ) | 
						
							| 7 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 8 | 1 | nn0cnd |  |-  ( W e. Word V -> ( # ` W ) e. CC ) | 
						
							| 9 |  | pncan3 |  |-  ( ( N e. CC /\ ( # ` W ) e. CC ) -> ( N + ( ( # ` W ) - N ) ) = ( # ` W ) ) | 
						
							| 10 | 7 8 9 | syl2anr |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( N + ( ( # ` W ) - N ) ) = ( # ` W ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift ( N + ( ( # ` W ) - N ) ) ) = ( W cyclShift ( # ` W ) ) ) | 
						
							| 12 |  | cshwn |  |-  ( W e. Word V -> ( W cyclShift ( # ` W ) ) = W ) | 
						
							| 13 | 12 | adantr |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift ( # ` W ) ) = W ) | 
						
							| 14 | 6 11 13 | 3eqtrd |  |-  ( ( W e. Word V /\ N e. ZZ ) -> ( ( W cyclShift N ) cyclShift ( ( # ` W ) - N ) ) = W ) |