Metamath Proof Explorer


Theorem 2cshwid

Description: Cyclically shifting a word two times resulting in the word itself. (Contributed by AV, 7-Apr-2018) (Revised by AV, 5-Jun-2018) (Revised by AV, 1-Nov-2018)

Ref Expression
Assertion 2cshwid WWordVNWcyclShiftNcyclShiftWN=W

Proof

Step Hyp Ref Expression
1 lencl WWordVW0
2 1 nn0zd WWordVW
3 zsubcl WNWN
4 2 3 sylan WWordVNWN
5 2cshw WWordVNWNWcyclShiftNcyclShiftWN=WcyclShiftN+W-N
6 4 5 mpd3an3 WWordVNWcyclShiftNcyclShiftWN=WcyclShiftN+W-N
7 zcn NN
8 1 nn0cnd WWordVW
9 pncan3 NWN+W-N=W
10 7 8 9 syl2anr WWordVNN+W-N=W
11 10 oveq2d WWordVNWcyclShiftN+W-N=WcyclShiftW
12 cshwn WWordVWcyclShiftW=W
13 12 adantr WWordVNWcyclShiftW=W
14 6 11 13 3eqtrd WWordVNWcyclShiftNcyclShiftWN=W